# CH

# A Close-up of the Methane Global Budget

#### MPI-Biogeochemistry September 7-9, 2011

- S. Kirschke, P. Ciais, P. Bousquet LSCE P. Canadell Global Carbon Project, CSIRO
- C. LeQuéré Tyndall Centre for Climate Change Research





Sander Houweling SRON/University of Utrecht - Lori Bruhwiler NOAA ESRL Bruno Ringeval University of Bristol - Elke Hodson WSL - Ben Poulter LSCE Renato Spahni University of Bern - Guido van der Werf VU University

# Global Carbon Project (GCP): Objectives



To develop comprehensive, policyrelevant understanding of the global carbon cycle, encompassing its natural and human dimensions and their interactions.

 $\checkmark$  Annual update of the global CO<sub>2</sub> budget

↘ New: Annual update of the global CH<sub>4</sub> budget



# Why Methane?

- CH<sub>4</sub> one of the most important radiatively active trace gases
- ▶ 0.5 W m<sup>-2</sup> direct RF
- ▶ Important for tropospheric chemistry
- ↘ Wide range of sources with high uncertainties
- ➤ Rapid rise in atmospheric concentrations since start of records in 1978 (0.8-2% y<sup>-1</sup>)
- High variability in atmospheric growth rate
- ↘ Target for emissions reductions due to short life time



After Petit et al., 1999



# Anthropogenic CH<sub>4</sub> Sources





# Natural CH<sub>4</sub> Sources





# CH<sub>4</sub> Sinks





# GCP Global Methane Budget

- Regular update of the CH<sub>4</sub> global budget, annually or bi-annually similar to global CO<sub>2</sub> budget
- Synthesis of existing data, bottom-up and top-down
- ☑ Contributions from
  - Observational networks (NOAA, CSIRO, LSCE, AGAGE)
  - Inventories (EDGAR, GEIA, GFED)
  - Inverse modeling groups, chemical transport models (OH)
  - Process-based models for wetland and fire
- ▶ Budget release in a high-profile paper each year





LABORATOIRE DES SCIENCES DU CLIMAT

۶ct

## CH<sub>4</sub> Atmospheric Growth Rate, 1983-2009





# Regional CH<sub>4</sub> Budgets, 2000-2008



## Wetland CH<sub>4</sub> Emissions, 1984-2008





#### Fire CH<sub>4</sub> Emissions, 1984-2008







## Correlation between wetland and fire flux

#### ❑ ORCHIDEE – GFEDv3

CORREL - ORCHIDEE\_GFED3\_BBG





## Correlation between wetland and fire flux

▶ LPJ-WHy-Me – GFEDv3

CORREL - LPJ\_WETLANDS\_GFED3\_BBG





## Correlation between wetland and fire flux

▶ LPJ Methane – GFEDv3

CORREL - GFED3\_BBG\_HODSON\_wetlands





## Interannual Variability





## Inversion Results - Totals

|                                      | 1984-1989   | 1990-1999      | 2000-2008               | -                                                          |
|--------------------------------------|-------------|----------------|-------------------------|------------------------------------------------------------|
| Average Atmospheric<br>Concentration | 1671.8±43.5 | 1759.8±20.9    | 1796.9±6.9              | Data from NOAA, CSIRO,<br>and LSCE atmospheric<br>networks |
| Average Atmospheric<br>Growth Rate   | 12.5±2.2    | 7.6±3.4        | 4.8±2.2                 |                                                            |
| Total Sources                        | 537.7       | 535.9<br>533.0 | 537.8<br>533.2          | Bousquet et al. 2011<br>PYVAR-SAC Inversion                |
|                                      |             |                | 540.5<br>517.7          |                                                            |
| Total Anthropogenic                  | 337.3       | 333.4          | 336.2                   | (PISOTI Et al. 2009)                                       |
| Sources                              |             |                | 354.0<br>319.9          | Houweling et al. (in prep.)                                |
| Total Natural Sources                | 200.3       | 202.5          | 201.6<br>186.5<br>197.8 | Bruhwiler et al. (in prep.)                                |
| Total Sinks                          |             |                | -525.0                  |                                                            |



# Inversion Results – By Category

|                   | 1984-1989 | 1990-1999 | 2000-2008      | -                           |
|-------------------|-----------|-----------|----------------|-----------------------------|
| Wetlands          | 163.7     | 165.3     | 163.2<br>164.0 | Bousquet et al. 2011        |
|                   |           |           | 184.0          | Houweling et al. (in prep.) |
| Biomass Burning   | 32.2      | 33.5      | 34.7           |                             |
|                   |           |           | 25.0<br>13.8   | Bruhwiler et al. (in prep.) |
| Fossil Fuel       | 118.2     | 117.7     | 117.4          |                             |
|                   |           |           | 78.2           |                             |
| Agriculture/Waste | 187.0     | 182.2     | 184.1          |                             |
|                   |           |           | 207.0<br>241.8 |                             |
|                   |           |           |                |                             |



# OH Sink

- ❑ Optimized using Methyl Chloroform proxy
- Small variations inferred for 2000-2009 (<5%) by recent Montzka paper
- Small variations also inferred by atmospheric chemistry models
- ↘ Large variations (5-10%) inferred for 1980-2000 by Prinn et al. (2005) and Bousquet et al. (2005)
- ❑ Convergence for the 2000s?





# Conclusions

- First attempt at a regular update of the CH<sub>4</sub> global budget within GCP
- Elements of the budget have been identified, initial data gathering has started and will continue
- ▶ Data analysis and synthesis of top-down and bottom-up approaches
- ↘ First budget release planned for end of this year, together with CO<sub>2</sub> budget



# Thank you.

#### List of contributors (so far):

Sander Houweling, Lori Bruhwiler, Bruno Ringeval, Elke Hodson, Ben Poulter, Renato Spahni, Guido van der Werf

#### **Your contribution**

▶ You want to contribute your ideas, data, model results to this GCP activity?

▶ Please contact Stefanie Kirschke (stefanie.kirschke@lsce.ipsl.fr)

▶ **Planet Under Pressure 2012:** Methane in the Climate System – The Basic Science and Reduction, Adaptation and Mitigation Strategies Abstract deadline: September 16, 2011

