

Gateway to the Earth

T1, TH1, TH2, TH3 test case results

Johanna Scheidegger British Geological Survey

T1: Lundardini heat conduction

The maximum difference of the two solutions lies between 0.0066 °C and -0.0021 °C. The mean error is 3.5 e-6 °C.

TH1: 1D thawing with conduction and advection

V=10 m/a

Max. difference:

0.0028, -0.0005 m

After 20 d: 0.0003 m

V = 100 m/a

Max. difference:

0.0038, -0.0012 m

After 20 d: -0.0006 m

For the numeric solution to match the analytical solution, the absolute and relative tolerance were set to 1e-11. Cell size:

TH2: Frozen inclusion Minimum temperature

Total liquid water volume

Heat flux exiting the system

Variation of the W parameter

TH3: Talik Opening/Closure equivalent permeability

TH3: total heat (Ca*T +Cf)

TH3: heat flux at the boundaries

Variation of the W parameter

Model performance TH3

Run	Mesh size	Relative tolerance	Absolute tolerance
Base case	0.005 m	1e-6	1e-4
Run 2	0.01 m	1e-4	1e-3
Run 3	0.01 m	1e-2	1e-4
Run 4	0.005 m	1e-2	1e-2

Model performance TH3: Total boundary fluxes

Total boundary fluxes
Base case and Run 3 are
similar, despite the
difference of top and bottom
boundary fluxes

Corrected total heat calculation

TH3: total heat, gradient 0 %

Corrected total heat calculation

General observation

- The model is more stable when a freezing curve with a continuous derivative is used
- For TH2 and TH3, an uncoupled model was used as initial conditions. The switch from a prescribed temperature distribution to a modelled temperature distribution results in instabilities in the boundary fluxes.

