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Coupled Thermo-Hydro processes

e Open field (in situ process
studies)

* Non-linear coupled
equations with steep fronts
due to phase change
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Intercomparison process (McKenzie et al. 2007)
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Intercompare for April 2015

e TH2 Case, Frozen inclusion thaw
* TH3 Case, Talik opening / closure
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Preparation study with Cast3M

* Finite Volumes

* Picard for non-linearities and coupling
* Implicit scheme, constant time steps
 Under-relaxation to stabilize

e Base case simulations parameters:

Nb time steps CPU time Average Nb
TH2 of iterations

31014 6.94 mm 75s-60s 3500-15000 38h-197h

| Nb Meshes | AverageAx | At | Nb time steps | CPU time (h

5.4 mm 7.5s—-60s 3500 -20000 >7h

TH3 17272 .
(2.7-7.6)




TH2&3 preparation study : physical system
considerations
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TH2&3 preparation study :
performance measures

Compare on punctual measures vs integrated
(over surfaces or volumes)

Cover range of applications (e.g. threshold, exit
flux, total heat)

How converged are the simulations on each
performance measure?

Associated level of uncertainty for simulation
results



TH2&3 preparation study :
convergence studies

Decrease time step / refine mesh (easier on TH3):
convergence achieved for both cases

Estimate the range of variability/sensitivity for
each performance measure

— Large spatial sensitivity on TH3 _PM2 (29.2%)

— Large temporal sensitivity on TH2_PM1 (7.2%)

Good base for confidence in the results ... but not
conducted for large levels of head gradients
where problems can be expected!

Did you carry on convergence tests?



Where do we
expect a larger
dispersion of
results?

Case TH2 - Time for total | Total Heat Flux after 9.10%s Total water volume after

. thaw 4.10%
“Frozen Inclusion”

Ax sensitivity range 1.4 % 12 % 0.015 %

At sensitivity range 7.2% 0.6 % 0.05%

Case TH3 - “Talik [ Closure time Upper Flux after 3.10% Total Heat after 3.10%

Opening/Closure”

Ax sensitivity range 0.7 % 29.2 % 0.03 %

At sensitivity range 3.4% 0.6 % 0.2%






imterfrsest Intercomparison

Results
— Cast3M DarcyTools ATS
-  PermaFoam MELT —_— SUTRA
—  Comsol SMOKER - MarsFlo

Paris, 9-10 April 2015
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TH2 PM2 : FLux(t)

0
_20 |
=
E 40 -
=3
>
=
g -60
|—
80 — Code
— Cast3M DarcyTools —— SUTRA
= PermaFoam SMOKER = MarsFlo
= Comsol ATS
_100 T T T T T T T T
0
-100
=200
€
§—300
x
e
E—4OD
i)
=500
Code
-gog —— Cast3M DarcyTools ATS
—  PermaFoam MELT — SUTRA
=  Comsol SMOKER = MarsFlo
=700 T T I I I I I T I
2.ed 6.ed 10.e4 14.e4 18.e4

Time (s)

-100 —

|

S}

(=

o
|

Total flux (W/m®)

=500 —

-600 —

=700

Total flux (W/m*)

1

w

o

o
|

]
B
o
o

|

Code
Cast3M DarcyTools ATS
PermaFoam MELT — SUTRA
= Comsol SMOKER = MarsFlo
-200
-400
—600 - Code
— Cast3M DarcyTools ATS
— PermaFoam MELT — SUTRA
= Comsol SMOKER = MarsFlo
-800 I I I I I I I I I
2.ed 6.ed 10.e4 14 .ed 18.e4

by g TP




Total water volume (m*)

Total water volume (m®)

1.09

1.08

1.07

1.09

1.08

1.07

TH2 PM3 : Water volume(t)

Code
— Cast3M DarcyTools ATS
PermaFoam MELT — SUTRA
== Comsol SMOKER = MarsFlo
\ T T T 1
0. 4.e4 8.ed 1.2e5 1.6e5
Time (s)
B Code
— Cast3M DarcyTools ATS
PermaFoam MELT — SUTRA
= Comsol SMOKER = MarsFlo
1 1 1 1 1
0. 4.e4 8.e4 1.2e5 1.6e5
Time (s)

1.1

Time (s)

110
E
[1h]
E
=2
S 1.09 -
i)
m
2
8
5]
|_
— Cast3M DarcyTools ATS
PermaFoam MELT — SUTRA
= Comsol SMOKER = MarsFlo
1.11 2
_.1.10
E
[1h]
E
=
S 1.09
9
m
=
s
o
|_
— Cast3M DarcyTools ATS
PermaFoam MELT — SUTRA
= Comsol SMOKER = MarsFlo
1.07 | | | |
0. 4.ed4 8.ed 1.2e5 1.6e5



TH3 PML1 : Keq(t)
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TH3 _PM3 : Total Heat(t)
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Lab. experiments

1. Associated with TH2, frozen inclusion

2. Pressure increase with the freezing front
(Nicolas Roux)



‘ GEOSCIENCES
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LSC

" Lab. Experiment TH2 « Frozen Inclusion »
collaboration GEOPS (F. Costard, T. Ali)

Monitoring of temperature (in the inclusion & downstream)
Monitoring of water flow rate
Measurement of transport velocity with tracer tests

« controlled conditions »?
Side heat losses (minimized with insulation & cold room
conditions)
Initial conditions « smooth »
Control homogeneity of the porous medium (saturation

Inclusion & pOFOSItY)
T°<0°C

interfrst






Funding

InterFrost funded till end 2014 by French INSU EC2CO (kick off
meeting supported)

Lab experiments funded by IPSL till end 2015

Funding is further required to organize meetings and for
participants

— Clic (for travel costs, formerly accepted but now restrained to purely
« climate » issues)

— |IPA action groups (identify outcomes, 30 April 2015) « ... these groups
have limited terms and focus on clearly defined research outputs like
maps, science plans or datablases ... ».

* Case of Guido Grosse (Research Coordination Network on Vulnerability of
Permafrost Carbon — Thermokarst Working Group)

— French « Chantier Arctique » project proposing to integrate the
climate community with next step including Richards equations



Academic though « Practical » cases

* (Case of Guido Grosse (Research Coordination Network on
Vulnerability of Permafrost Carbon — Thermokarst Working
Group): database of cases of systems under climate change

— Simple lake system (Rowland et al. 2011; Wellman et al 2013)

1800m

(a) I 1 |Thermal boundary layer
< | — | o ’
|
m

S00m

Geothermal heat flux Not to scale

e Other cases possible: cut in a water catchment



Next steps

Paper about TH2 and TH3

Non saturated media

— Revisited by Painter recently for experiments (esp.
Mizogushi)

— Paper by Barret Kurylyk
Experiments (running ones, others)

Field data ?

— System in North Quebec with John
— System in Siberia with Christophe



Schedule?

Paper about TH2 and TH3

Non saturated media

— Revisited by Painter recently for experiments (esp.
Mizogushi)

— Paper by Barret Kurylyk
Experiments (running ones, others)

Field data ?

— System in North Quebec with John
— System in Siberia with Christophe



Actions for TH2&3 (1)

Provide a mathematical expression for all performance measures, revisit their
names, remove the TH3 _PM1 0% case

Please revisit your results considering a spatial and temporal convergence analysis.
Maybe the mesh size / time steps are not sufficiently small

PM corresponding with Threshold times with estimation bounds/range
Provide your mesh size, time steps ... to fill a big table
Clarify the situation in TH3_PM1 by adding a new PM: point temperature
evolution within the talik zone (precise!)

— Needs a pre study ? Devoted to a sub-group ? Chris & Jeff

— Other issue with oscillations (see T1 or TH1 rather?)

— Two points depending on the regime
— Plot profiles time=threshold/2. for all

Push codes further? Increase velocities ? Steeper freezing & permeab. curves?
Variable boundaries inside the domain? Limit in term of computational time? Limit
in terms of minimum time step? Directions of limits (steeper when w smaller)

Include dependence study on w? Yes (-4°C, base, the smaller we can make)
Provide the curves threshold as a function of gradH?
Add a 6% gradient ? Value at the threshold like 6.4%



Actions for TH2&3 (2) & schedule

* Provide all results by end of June (all)
e Send a paper structure (now, finalized CG, beginning July)

* Send compilation with first line of thoughts shared (CG, soon)
— About the need for converged results

— What have we learnt
» Approaches/discretization/limits ...

— The ways to obtain it (Fouriers, CFL and spatial and temporal
convergence tests)

— Include Peclets numbers ... understand TH3 ... Barret.

— Local refinements, massively parallel methods ...

— About discrepancies in the physics implemented in the codes

— About the different types of PM (various spatial integration levels)

 Watch that all questionaires are filled and made available



Next meetings?

* First have draft paper and experiments (end of
June) sufficiently advanced

* Prepare an overview of future tasks
* Meet then



IPA action group call

Submit as existing with production of
validation test cases

Provide guidance, experience on numerics and
processes reassessment

When is advection important ? Guidelines ...
Help from Jennifer ... & Barret



Future tasks

Experiments in cold room
Field data (monitoring, sites, ...)

Impact of climate change on a typical unit of
the landscape (a lake system)

Large scale systems
Revisit T2?
Non-saturated issues



Cold room experiments

* TP case (pressure increase) ... as a first step
towards mechanical issues

 TH2 case and what is proved by an
experiment?

e Others ?



Field cases studies

* John’s case in North Québec
* Christophe’s case in Siberia
 Western Ontarion (Biotron) ... Jeff & Barret

— Compile the information for an oral presentation or one
page to send to the group. Schedule : send one page of
summary for summer (end of june)



Impact of climate change on a typical
unit of the landscape (a lake system)

... Johanna, Jennifer, Cliff, John, ... side
preparation




Large scale systems

... what do you mean ?

How can we improve our large scales simulations
knowing what we have learnt here at the small
scale?

Information loss across spatial and temporal
scales ... link with T2?

Extend Talik issue of TH3 to a larger scale « real »
case?

French-swedish case discussed (Johann, Patrik)



Revisit T2?

* Long term simulation of Permafrost depths
(1D approaches at geological times)

* Heterogenity (moisture content, include
salinity affecting soil freezing properties,
characteristic curves ...)

 Discuss with Johanna test cases ...



Non-saturated issues

Scott Painter recently revisited the
experiments (es. Mizogushi)

Barret the physics behind ... review of
experiments (Mizoguchi, Jame and Norum)

What are the challenges and our added value
in considering these issues?

Differences in saturation winter/summer,
Agnes post doc

Include climate community



