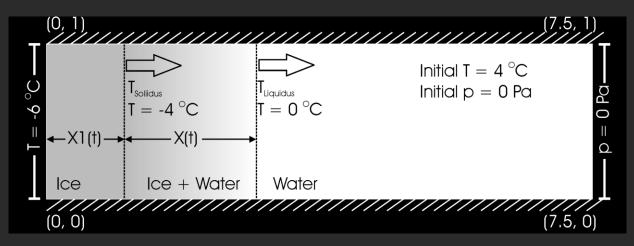

Cold Regions Coupled Thermohydraulic Code Benchmarking (T1 and TH1): SUTRA Results

Jeffrey McKenzie, Barret Kurylyk Clifford Voss, and Kerry MacQuarrie

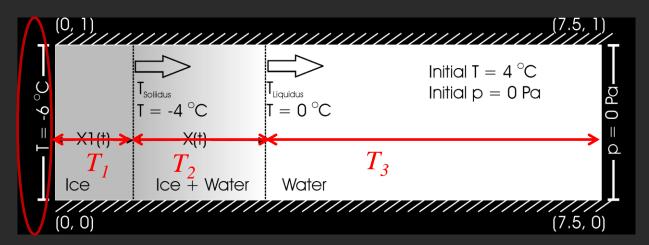


Introduction: Benchmark 1 (T1)

- 1. Proposed by Lunardini (1981) (*Heat Transfer in Cold Climates, p. 393-396*)
- 2. Three zones within domain: frozen, "mushy", and unfrozen
- **3.** Very useful as a numerical model benchmark because it allows for a finite freezing temperature range
- 4. Requires a 'hack' because diffusivity in mushy zone is constant

McKenzie et al. (2007, AWR)

Heat Transfer in Cold Climates	
Lunardini, Virgil J.	
Note: This is not the actual book cover	


Introduction: Benchmark 1 (T1)

$$T_{1} = (T_{m} - T_{s}) \frac{\operatorname{erf}(x/2\sqrt{\alpha_{1}t})}{\operatorname{erf}(\psi)} + T_{s}$$

$$T_{2} = (T_{m} - T_{f}) \frac{\operatorname{erf}(x/2\sqrt{\alpha_{4}t}) - \operatorname{erf}(\gamma)}{\operatorname{erf}(\gamma) - \operatorname{erf}(\psi\sqrt{\alpha_{1}/\alpha_{4}})} + T_{f}$$

$$T_{3} = (T_{0} - T_{f}) \frac{-\operatorname{erfc}(x/2\sqrt{\alpha_{3}t})}{\operatorname{erfc}(\gamma\sqrt{\alpha_{4}/\alpha_{3}})} + T_{0}$$

Have to solve two other simultaneous equations to obtain

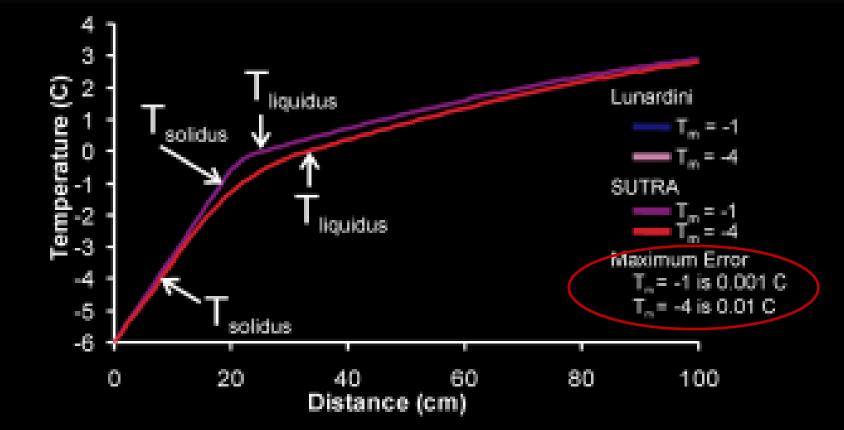
McKenzie et al. (2007, AWR)

Methods: Benchmark 1 (T1)

Table 1

Parameters used in analytical solution by Lunardini [28]

Parameter	Value	
T ₀ (°C)	4	
T_{s} (°C)	-6	
T _f (°C)	0	
$T_{\rm m}$ (°C) ^a	-4, -1	
k1 (J/s m C)	3.464352	
k ₂ (J/s m C)	2.941352	
k3 (J/s m C)	2.418352	
$C_1 (J/m^3 C)$	690360	
$C_2 (J/m^3 C)$	690360	
$C_3 (J/m^3 C)$	690360	
$\xi_{f} (kg_{water}/kg_{solid})$	0.0782	
ξο (kg _{water} /kg _{solid})	0.2	
$L_{\rm f}$ (J/kg)	334720	
$y_d (kg/m^3)$	1680	
y ^a	1.395, 2.062	
ψ^{a}	0.0617, 0.1375	

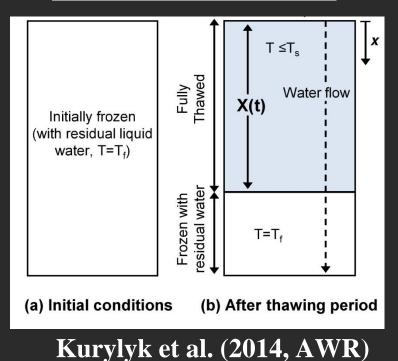

McKenzie et al. (2007, AWR)

Model parameters used in SUTRA-ICE simula	tions
Parameter	Lunardini
Physical properties	
Gravity (m/s ²)	0
Fluid specific heat (J/kg)	4187
Ice specific heat (J/kg)	2108
Ice thermal conductivity (J/s m C)	2.14
Density of ice (J/kg)	920
Latent heat of fusion (J/kg)	334000
Fluid thermal conductivity (J/s m C)	0.58
Fluid compressibility [kg/(m s ²)] ⁻¹	0
Solid matrix compressibility [kg/(m s2)]-1	0
Solid grain specific heat (J/kg)	840
Solid grain conductivity (J/s m C)	2.9
Density of solid grains (kg/m ³)	2600
Porosity (-)	0.05
Permeability (m ²)	10^{-10}
Anisotropy (kvertical: khorizontal)	1:1
Longitudinal dispersivity (m)	0
Transverse dispersivity (m)	0
Time step controls	
Time step size (h)	0.25
Total simulation time (days)	1
SUTRA-ICE parameters	
Freezing function	L_{ray}
Freezing function parameters	m = 0.25 - 2.0
Residual saturation	0
Relative permeability method	Lkr
Relative permeability parameters	N/A
Minimum Kr	10-6

McKenzie et al. (2007, AWR)

Results: Benchmark 1 (T1)

Uses temperature as the benchmarking variable

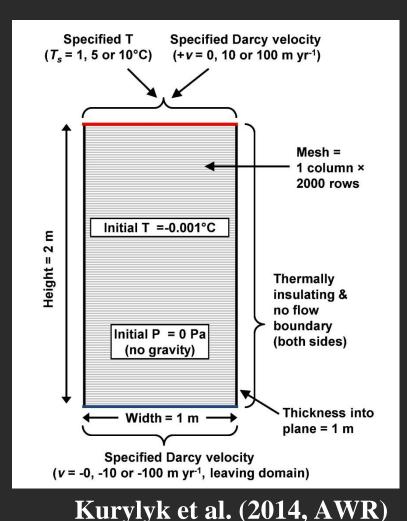


McKenzie et al. (2007, AWR)

Introduction: Benchmark 2 (TH1)

- 1. Based on earlier work by Fel'dman (1972) and Lunardini (1998)
- 2. Can accommodate heat advection, and thus is an ideal benchmark for cold regions groundwater flow and energy transport codes.

$$X + \frac{\alpha}{v_t} \left\{ \exp\left(-\frac{v_t X}{\alpha}\right) - 1 \right\} = v_t S_T t$$



Uses depth to thawing front as the benchmarking variable

Methods: Benchmark 2 (TH1)

SUTRA Setup

- 1. Single 2m tall column with 2000 rows
- 2. Specified flux at top (and bottom) (permeability is immaterial)
- 3. $P_i > 0$ to maintain saturated conditions
- 4. Specified surface temperature on top boundary (1°C).
- 5. Set initial temperature at or slightly below the temperature at which residual liquid saturation is first achieved (i.e. completely frozen).

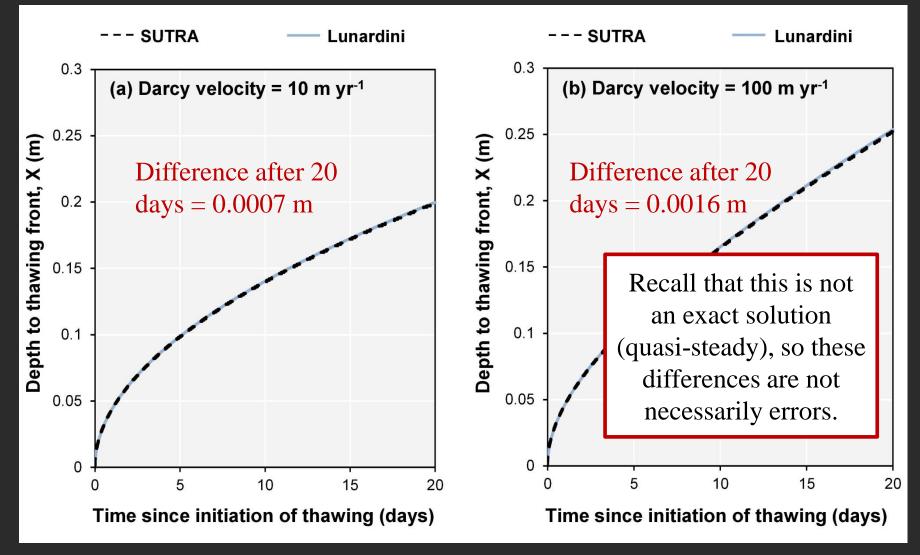
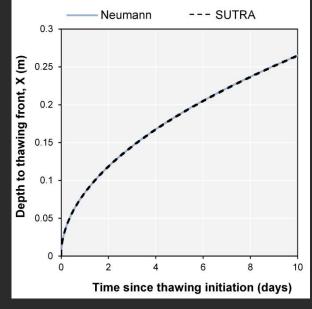

Methods: Benchmark 2 (TH1)

Table A1

Input parameters for SUTRA and the analytical solutions.

Parameter	Symbol	Value	Units
Hydraulic properties			
Porosity	8	0.50 (0.25) ^a	-
Relative permeability ^b	k _{rel}	off	-
Darcy velocity (downwards)	v	0, 0.001, 10, and 100	m yr ⁻¹
Gravity	g	0	m s ⁻²
Water saturation (total)	Sw	1	-
Sat. that undergoes phase change $(S_w - S_{res})$	Swf	1 (for solutions)	-
Thermal properties			
Thermal conductivity of thawed zone	λ	1.839 (2.458)	W m ⁻¹ °
Heat capacity of thawed zone	cρ	$3.201 \times 10^{6} (2.711 \times 10^{6})$	J m ^{−3} °C
Thermal diffusivity of thawed zone	α	$5.743 \times 10^{-7} (9.067 \times 10^{-7})$	m ² s ⁻¹
Thermal diffusivity of frozen zone	α_{f}	$1.205 \times 10^{-6} \ (1.297 \times 10^{-6})$	$m^2 s^{-1}$
Thermal dispersivity	_	0 ^c	m
Density of water	ρ_w	1000	kg m ⁻³
Specific heat of water	Cw	4182	J kg ^{−1} °C
Heat capacity of water	$c_w \rho_w$	4.182×10^{6}	J m ⁻³ C ⁻
atent heat of fusion for water	L_{f}	334,000	J kg ⁻¹
Other thermal settings			
nitial temperature	T _i	0^{d}	°C
Preezing temperature (solutions)	T_f	0	°C
Residual freezing temperature (SUTRA)	Tres	-0.0005^{e}	°C
Residual liquid saturation	Sres	0.0001	-
Slope of freezing function	b	1999.8	°C ⁻¹
SUTRA solver settings and spatiotemporal discretization			
SUTRA element height	-	0.001	m
Number of time steps to 20 days	-	~7,000,000	-
SUTRA time step size	-	0.00001-0.0001	h


Results: Benchmark 2 (TH1)

Kurylyk et al. (2014, AWR)

Additional Comments

- 1. We also provide guidelines (and results) for using the classic Neumann solution as a benchmark.
- 2. Please send me an email if any difficulties arise.
- **3.** Reasonable results can likely be obtained with much larger time steps.

Kurylyk et al. (2014, AWR)