Parameter sheet for InterFrost Test Case TH3 "Talik Opening/Closure"

Geometrical features, boundary conditions and parameter sets are provided below as well as performance measures.

Geometrical features

FIGURE 1 – Geometrical features : the circle centered in C goes through points A and B. CA = CB = R

Symbol	Description	Value	Unit
L_x	Longitudinal extension of the simulated domain	1	m
L_y	Lateral extension of the simulated domain	1	m
$(L_{cx}; L_{cy})$	Position of the lower circle center (Symmetry for the upper one)	(0.5; 0.1)	m
R	Radius	0.5099	m

TABLE 1 – Geometrical parameter values for TH3 Test Case

Boundary and initial conditions

Symbol	Description	Value	Unit
$T^{-}_{initial}$	Initial temperature of the frozen inclusion	-5	$^{\circ}C$
$T^+_{initial}$	Initial temperature of the thawed domain	+5	$^{\circ}C$
T_{in}	Temperature of the incoming flow	+5	$^{\circ}C$
$T_{imposed}$	Imposed cold temperature	-5	$^{\circ}C$
$\Delta H/L_x$	Hydraulic head gradient 1	0	(-)
$\Delta H/L_x$	Hydraulic head gradient 2	0.03	(-)
$\Delta H/L_x$	Hydraulic head gradient 3	0.09	(-)
$\Delta H/L_x$	Hydraulic head gradient 4	0.15	(-)

TABLE 2 – Initial and boundary conditions for temperature and suggested hydraulic head gradients for TH3 Test Case

FIGURE 2 – Water flow boundary conditions

FIGURE 3 – Heat transfer boundary conditions and initial thermal conditions

Equations

Flow equation (Eq. 1) :

$$(S_w \epsilon \rho_w g \beta) \frac{\partial p}{\partial t} = \vec{\nabla} \cdot \left(\mathbf{K}_{\mathbf{w}} (\vec{\nabla} p + \vec{\nabla} z) \right) + \left(\epsilon \frac{\rho_i - \rho_w}{\rho_w} \frac{\partial S_w}{\partial t} \right)$$
(1)

Heat transfer (Eq. 2) :

$$\left(\epsilon (S_w \rho_w C_w + S_i \rho_i C_i) + (1 - \epsilon) \rho_s C_s + \epsilon \rho_i L \frac{\partial S_w}{\partial T} \right) \frac{\partial T}{\partial t} = \vec{\nabla} \cdot (\lambda_{eq} \vec{\nabla} T) + \vec{\nabla} \cdot \left(\rho_w C_w T \mathbf{K}_w (\vec{\nabla} p + \vec{\nabla} z) \right)$$
(2)

Subscripts denote w for water, i for ice, s for solid matrix. Unknowns are p for pressure expressed in meters ($p = P/\rho_w g$, with P pressure in Pascals) and T for temperature (° K).

Parameter values

Symbol	Description	Value or expression	Unit
ϵ	Porosity	0.37	(-)
β	Compressibility	10^{-8}	Pa^{-1}
g	Acceleration of Gravity	9.81	$m.s^{-2}$
λ_w	Water thermal conductivity	0.6	$W.m^{-1}.K^{-1}$
λ_i	Ice thermal conductivity	2.14	$W.m^{-1}.K^{-1}$
λ_s	Solid matrix thermal conductivity	3.5	$W.m^{-1}.K^{-1}$
λ_{eq}	Equivalent thermal conductivity	$\epsilon (S_w \lambda_w + (1 - S_w) \lambda_i) + (1 - \epsilon) \lambda_s$	$W.m^{-1}.K^{-1}$
C_w	Water Heat capacity	4182	$J.kg^{-1}.K^{-1}$
C_i	Ice Heat capacity	2060	$J.kg^{-1}.K^{-1}$
C_s	Solid matrix heat capacity	835	$J.kg^{-1}.K^{-1}$
$ ho_w$	Water volumetric mass	1000	$kg.m^{-3}$
$ ho_i$	Ice volumetric mass	920	$kg.m^{-3}$
$ ho_s$	Solid matrix volumetric mass	2650	$kg.m^{-3}$
$(\rho C)_{eq}$	Equivalent volumetric Heat capacity	$\epsilon \left(S_w \rho_w C_w + (1 - S_w) \rho_i C_i \right) + (1 - \epsilon) \rho_s C_s$	$J.m^{-3}.K^{-1}$
μ	Water dynamic viscosity	1.79310^{-3}	$kg.m^{-1}.s^{-1}$
L	Latent heat	3.3410^{5}	J.kg-1
$S_w(T)$	Water saturation for $T \ge 273.15$	1	(-)
$S_w(T)$	Water saturation for $T < 273.15$	$(1 - S_{wres})e^{-((T - 273.15)/W)^2} - S_{wres}$	(-)
S_{wres}	Residual saturation in $S_w(T)$	0.05	(-)
W	Parameter in $S_w(T)$	0.5	K
K_w	Permeability	$k_r k_{int} ho_w g/\mu$	$m.s^{-1}$
k_{int}	Intrinsic permeability	1.310^{-10}	m^2
$k_r(S_w)$	Relative permeability	$10^{-\Omega\epsilon(1-S_w)}$ if $k_r(S_w) > 10^{-6}$	(-)
$k_r(S_w)$	Relative permeability	10^{-6} if $k_r(S_w) \le 10^{-6}$	
Ω	Impedance factor	50	(-)

TABLE 3 – Physical parameter values and expressions considered for TH3 Test Case

Performance measures

Performance measures for code results inter-comparison are :

- PF1 : Plot the evolution of the equivalent permeability of the system as a function of time (the equivalent permeability results from the steady state simulation of flow and computation of total water flux divided by head gradient).
- PF2 : Plot the evolution of the total heat flux entering the lateral boundaries (upper and lower limits where negative temperature is imposed) as a function of time.
- **PF3** : Plot the evolution of the total heat within the simulated domain as a function of time.

A parameter sensitivity study is proposed to vary flow velocities with a series of imposed head gradient values (see Tab. 2). So these performance measures should be provided for these 4 flow regimes on the same graph.

Another sensitivity study is suggested as an option. It concerns the W parameter in the $S_w(T)$ law providing larger or smaller "mushy zones". The unique value of 0.5 is proposed in Tab. 3, corresponding to a B_t value of roughly $-1^{\circ}C$ for the linear law (see [McKenzie et al. 2007], mushy zone extends from $0^{\circ}C$ to $-1^{\circ}C$). However two other values are suggested : 1.87 corresponding roughly to a B_t of $-4^{\circ}C$ and 0.05 corresponding to a B_t value of $-0.1^{\circ}C$. These runs should be considered for the base case head gradient of 0.03. The performance measures associated with these 3 values should be plot together on a separate graph.