CFIESS, LSCE, Paris Feb. 15-17, 2011

EMISSION, FATE AND RESPIRATION EXPOSURE RISK OF POLYCYCLIC AROMATIC HYDROCARBONS IN CHINA

Shu TAO Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences Peking University

1. INTRODUCTION

- 2. EMISSION INVENTORY
- 3. OUTFLOW FROM CHINA
- 4. INHALATION EXPOSURE RISK

CONTAMINATION OF PAHs IN CHINA

16 parent PAHs on US EPA priority pollutant list Nap, Acy, Ace, Flo, Phe, Ant, Fla, Pyr, BaA, Chr, BbF, BkF, BaP, IcdP, DahA, and BghiP

Incomplete combustion

industry, motor vehicles, residential solid fuel, wildfire etc.

important in China and other developing countries

Regionally based assessment of PTSs – UNEP Chemicals, 2003

LOCAL CONTAMINATION

severe contamination in Tianjin

based on a short-term air transport modeling over 40% population live in urban area with annual mean BaPeq above 10 ng/m³

Tao et al., ES&T, 2006

LONG-RANGE TRASNPORT POTENTIAL

480 0

Transport time (h)

Altitude (m).

sources and pathways of PAHs observed at Alert, the Arctic

based on emission inventory, trajectory calculation, and a probabilistic model (ISCF) from almost everywhere in North Hemisphere

360 0

Transport time (h)

Transport time (h)

360

360 0

Transport time (h)

Wang et al., ES&T, 2010

1. INTRODUCTION

- **2. EMISSION INVENTORY**
- 3. OUTFLOW FROM CHINA
- 4. INHALATION EXPOSURE RISK

DEVELOPMENT OF PAH EMISSION INVENTORY

16 parent PAHs on USEPA priority pollutant list

from naphthalene to benzo(g,h,i)perylene

major emission activities

firewood, straw, domestic coal, industrial coal, coke ovens, motor vehicles, natural gas, consumer product usage, aluminum production, iron and steel production, petroleum refinery, gasoline distribution etc.

emission factors

a thorough literature review, medians and distributions used

banzo[a]pyrene, traffic oil, n=33

emission activities

available data were those for all provinces and only 135 counties in China

ENERGY CONSUMPTION PREDICTION

REGRESSION MODELS

traffic oil

biofule

Domestic coal vs. population/T

1. 0E+05 1. 0E+04 1. 0E+03 1. 0E+02 1. 0E+00 1. 0E+00 1. 0E+00 1. 0E+00 1. 0E+00 1. 0E+00 1. 0E+04 1. 0E+04 1. 0E+03 1. 0E+04 1. 0E+04 1. 0E+04 1. 0E+04 1. 0E+04 1. 0E+03 1. 0E+04 1. 0E+04 1. 0E+03 1. 0E+04 1. 0E+04 1. 0E+04 1. 0E+03 1. 0E+02 1. 0E+04 1. 0E+02 1. 0E+03 1. 0E+02 1. 0E+03 1. 0E+02 1. 0E+03 1. 0E+

industrial petroleum

biomass burning

ENERGY CONSUMPTION PREDICTION

TOTAL EMISSION AND SOURCE PROFILE

- annual emission was 116,000 ton in 2003
- primarily from small-scaled coke ovens and indoor biomass

COMPOSITION PROFILE OF THE EMISSION

10% was carcinogenic compounds

compared to 2.7% in the Great Lake area

GEOGRAPHICAL DISTRIBUTION

similar to aerosol optical depth in spatial pattern

PAH emission density with 1x1 km² resolution, 2003

aerosol optical depth (MODIS), 2003 Li et al., J Int. Remote Sensing, 2010

- total PAH emission in China: 116,000 ton in 2003
- Major Sources: indoor biomass burning, small-scaled coke ovens
- 10% of total emission in China were carcinogenic

Environmental Science & Technology 2006, 40, 702-708 Environmental Science & Technology 2007, 41, 683-687 Atmospheric Environment 2008, 42, 6828-6835 Science of Total Environment 2008, 1140, 1-21 Environmental Pollution 2008, 156, 657-663 Anna New York Acad Sci, 2008, 1140, 218-227 Atmospheric Environment 2009, 43, 812-819

- **1. INTRODUCTION**
- **2. EMISSION INVENTORY**
- 3. OUTFLOW FROM CHINA
- 4. INHALATION EXPOSURE RISK

POTENTIAL RECEPTOR INFLUENCE FUNCTION

- forward air mass trajectory calculation based
 HYSPLIT
- Potential Receptor Influence Function PRIF
 - a probability density function

idea borrowed from Potential Source Contribution Function (PSCF) Hafner et al., 2003

the probability of PAHs arriving at a receptor site during a given emission duration and a known period of transport time

processes (emission, partition, degradation, deposition) included

outflow quantification

ANNUAL PAH OUTFLOW FROM CHINA

naphthalene, phenanthrene, pyrene, benzo(a)pyrene 3511 ton (8.0%), 1119 ton (7.2%), 663 ton (10.5%), 47.8 ton (3.3%)

1 day

5 day

10 day

10 - -9

time series concentration data from two sites

Gosan (33 °N, 126 °E), Lee et al., J. Geophys. Res. Atmos. 2006

Guangzhou (23 N, 113 °E), Le et al., Sci Total Environ. 2006

OUTFLOW QUANTIFICATION

- total emission and PRIF calculation based
- net input of pyrene to various countries
- mean travel time and annual input

INTERANNUAL FLUCTUATION

standardized monthly anomalies at two receptor areas

35°N-45°N – 135°E-145°E (outflow); 135°W-145°W (LRT), PRIF of pyrene

correlations

outflow – Southern Oscillation Index

LRT – Pacific North America Index

- PRIF can be used to characterize PAH outflow
- outflow accounted for 3~11% of the total emission

Environmental Science & Technology 2007, 41, 8370-8375 Atmospheric Environment. 2007, 41, 8370-8379 Environmental Science & Technology 2008, 41, 5196-5201 Environmental Science & Technology 2010, 44, 1017-1022

- **1. INTRODUCTION**
- **2. EMISSION INVENTORY**
- 3. OUTFLOW FROM CHINA
- 4. INHALATION EXPOSURE RISK

ATMOSPHERIC TRANSPORT MODELING

atmospheric transport model Ma, 2003

modified by including processes of air/surface exchange, partition, and degradation atmospheric transport module (24km x 24km x 12 layer) soil-air exchange and soil module (fugacity based) water-air exchange and water module (stagnant film model)

VALIDATION

Ambient air at 35 sites, 1.5m

Surface soil at 24 sites

Guangzhou, China,, Li et al., 2003

GEOGRAPHICAL DISTRIBUTION - AIR

• China, 2003, 15 PAHs

surface soil, naphthalene and benzo(a)pyrene

Ambient air, annual means, 1.5 m above the ground

AMBIENT AIR BaPeq

ambient air concentration of BaPeq 1.5 m above the ground

area based mean: population weighted mean: over 10 ng/m³ China standard: over 1 ng/m³ WHO guideline: 2.4 ng/m³
7.6 ng/m³
30% of population
77% of population

BaPeq, area based

BaPeq, population weighted

RE-CALCULATED RISK

Iung-cancer risk due to inhalation exposure to PAHs

population attributable fraction (PAF)1.6 (0.91~2.6)%population weighted extra lifelong lung cancer morbidity51.5 (27.3~95.3)/100 000

variation among individuals

22% of population have the risk greater than100/100,000underestimation for high-risk population without the uncertainty analysis

Spatial distribution of lifelong risk

Accumulative distribution of lifelong risk

- population weighted annual mean BaPeq: 7.6 ng/m³
- exposure of 30% population exceeded national standard
- population attributable fraction: 1.6% = 45.5/100,000
- high risk of vulnerable population

Environmental Science & Technology 40, 2006, 4586-4591 Chemosphere 55, 2007, 1922-1928 Science of Total Environment 383, 2007, 98-105 Proceedings of the National Academy of Sciences of the USA 106, 21063-21067

FUTURE STUDIES

- uncertainty
- indoor air
- other PAHs
- ingestion
- global

Emission factor database Combustion database $0.1^{\circ} \times 0.1^{\circ}$ combustion fuel inventory 64 fuel types a by product of CO₂ emission inventory

FINANCIAL SUPPORT NATIONAL SCIENTIFIC FOUNDATION OF CHINA

ACKNOWLEDGEMENT