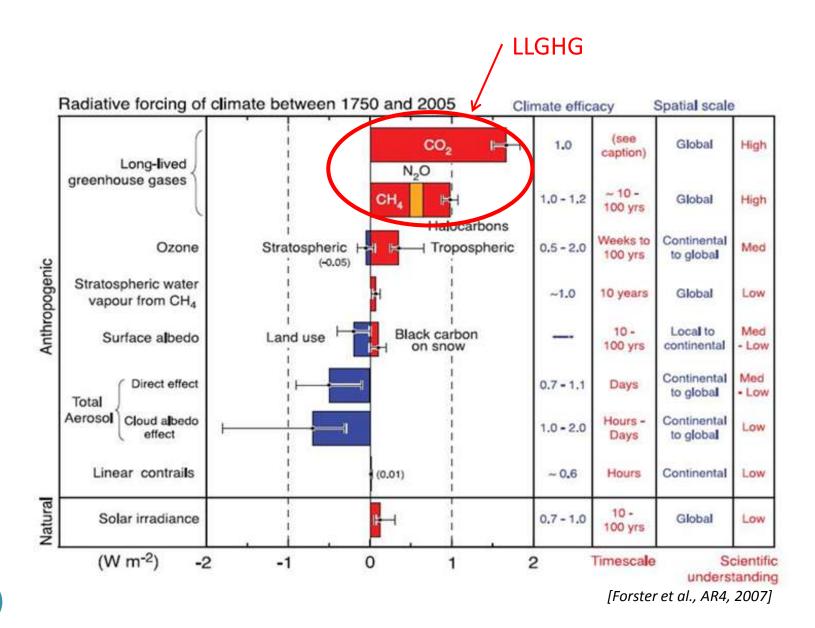
From GHG emissions to Radiative Forcing: attribution following the causal-chain

Thomas Gasser

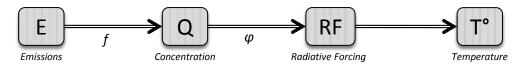

Acknowledgements:

Philippe Ciais (LSCE), Maxime Tortora (CIRED, ENS)

1

02/10/2012 - Jussieu

Long-Lived GreenHouse Gases



- GHG Causality
- Illustrations
- Attribution
- Linearization

2

1.1. GHG Causality

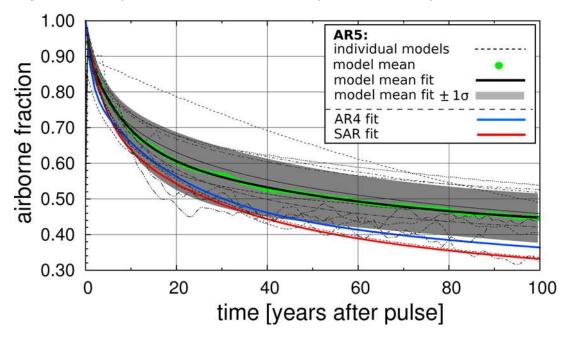
GHG 'usual' causal-chain

Mathematical formulations

• From emissions to concentration:

$$Q(t) = \int_{0}^{t} E(t') - S(t')dt'$$

$$= \int_{0}^{t} E(t') - S(Q(t'))dt'$$


$$= \int_{0}^{t} E(t') - S(E(0, ..., t'))dt'$$

$$Q(t) = f(E(0, ..., t'))$$

• From concentration to radiative forcing: $RF(t) = \varphi(Q(t))$

1.2. Illustrations

• f in simplest models: Impulse Response Functions

Typical IRF for CO2:

$$irf(t) = a_0 + \sum_{i=1}^{N} a_i e^{-t/\tau_i}$$

Leads to:

$$Q(t) = \int_{0}^{t} irf(t - t')E(t')dt'$$

• φ by IPCC: fit on 3D radiative models

$$RF(t) \propto (Q(t) - Q_0)$$

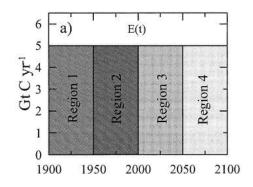
 $RF(t) \propto \left(\sqrt{Q(t)} - \sqrt{Q_0}\right)$

$$\overline{Q_0}$$

for 'low' concentrations (SF6, CFCs, HFCs)

for 'moderate' concentrations (CH4, N2O)

 $RF(t) \propto \ln\left(\frac{Q}{Q_0}\right)$

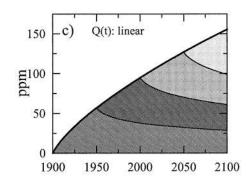

for 'high' concentrations (CO2)

1.3. Attribution (of Q)

Considering regional emissions: $E_{all}(t) = \sum_{i} E_{i}(t)$

We have: $Q_{all}(t) = f(E_{all}(0,...,t))$

But we want $Q_i(t)$ and then $RF_i(t)$.

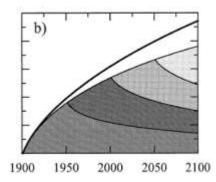


If *f* is linear:

$$\sum_{i} Q_{i}(t) = \sum_{i} f(E_{i}(0, ..., t))$$

$$= f(\sum_{i} E_{i}(0, ..., t))$$

$$= Q_{all}(t)$$

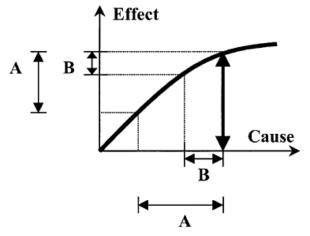


If f is not linear:

$$\sum_{i} Q_{i}(t) = \sum_{i} f(E_{i}(0,...,t))$$

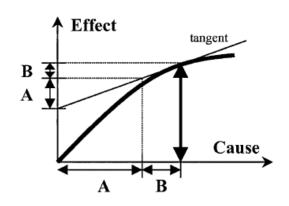
$$\neq f(\sum_{i} E_{i}(0,...,t))$$

$$= Q_{all}(t)$$


[Trudinger et al., 2005]

1.4. Linearization (1)

We define attribution coefficients:


$$Q_i(t) = \xi_i^* Q_{all}(t)$$

Normalized Residual method:

$$\begin{aligned} \xi_i &= f \big(E_{all}(0, \dots, t) \big) \\ &- f \big(E_{all}(0, \dots, t) - E_i(0, \dots, t) \big) \\ \xi_i^* &= \frac{\xi_i}{\sum_i \xi_i} \end{aligned}$$

Normalized Marginal method:

$$\xi_{i} = \frac{\partial f}{\partial E}\Big|_{E_{all}(0,\dots,t)} E_{i}(0,\dots,t)$$

$$\xi_{i}^{*} = \frac{\xi_{i}}{\sum_{i} \xi_{i}}$$

1.4. Linearization (2)

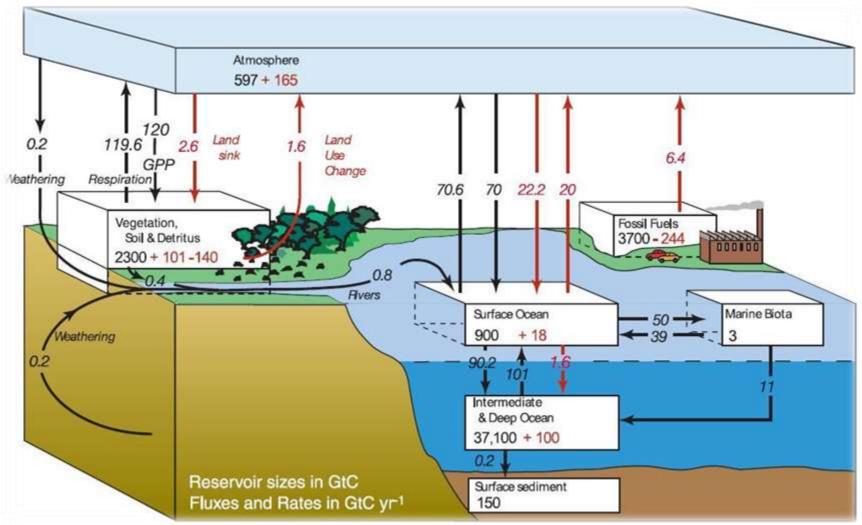
Normalized Residual method:

- For *China* vs. *Rest of the World*, it requires only <u>3 simulations</u>.
- If we know a model is 'almost' linear, we can skip one simulation...
- NR is the 'second best' method according to UNFCCC. The first one is NM.

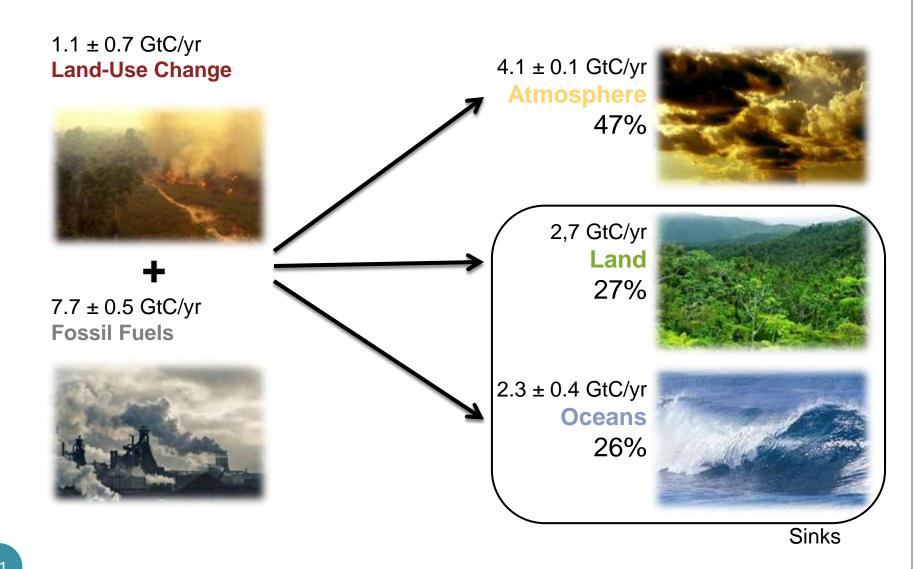
• To be used with complex models (e.g. aerosols / atm. chemistry)

Normalized Marginal method:

- It is necessary to define a <u>derivative</u> of a model!
- We can either approximate by:


$$\frac{f\left(E_{all}(0,...,t)\right) - f\left(E_{all}(0,...,t) - \alpha E_i(0,...,t)\right)}{\alpha E_i(0,...,t)} \xrightarrow[\alpha \to 0]{} \frac{\partial f}{\partial E}\Big|_{E_{all}(0,...,t)}$$

- or create some sort of 'adjoint' model with formal derivative forms included deep within the code.
- To be used with simple models (e.g. LLGHG)


- CO2
- CH4
- N2O

9

2.1. CO2 cycle

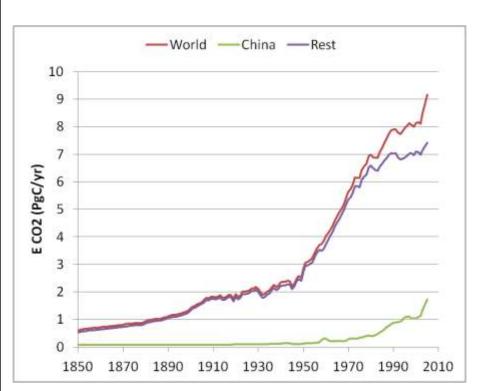
2.2. CO2 budget

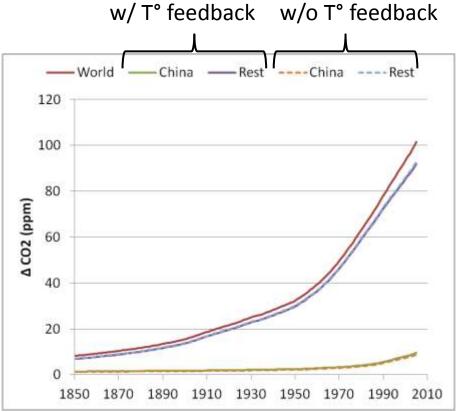
2.3. CO2 attribution (1)

Budget equation:
$$\frac{dCO2_{atm}}{dt} = E(t) - S_{ocean}(t) - S_{land}(t)$$

With:
$$S_{\text{ocean}}(t) = f_o(\text{CO2}(t), \text{T}^{\circ}(t), \text{N}(t), ...)$$

 $S_{\text{land}}(t) = f_l(\text{CO2}(t), \text{T}^{\circ}(t), \text{N}(t), ...)$


Shall we (can we) account for 'secondary drivers'?

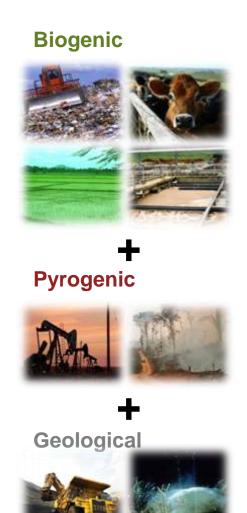

Attribution with OSCAR:

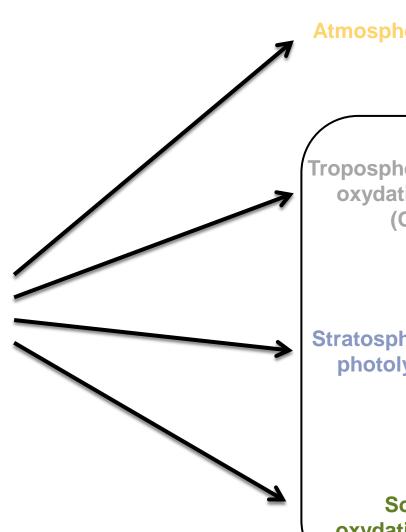
• a regionalized box model, which land module is calibrated on ORCHIDEE, with a bookkeeping land-use model, with coupled climate responses functions

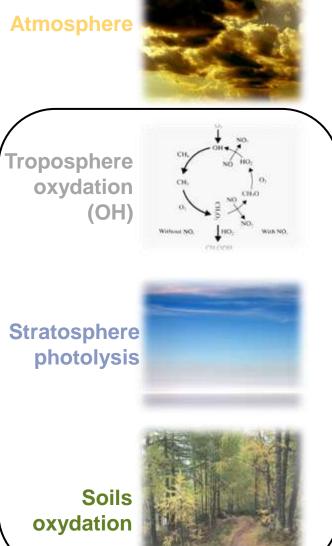
• where:
$$S_{\text{ocean}}(t) = \widetilde{f_o}(CO2(t); T^{\circ}(t))$$

 $S_{\text{land}}(t) = \widetilde{f_l}(CO2(t); T^{\circ}(t))$

2.3. CO2 attribution (2)


China's contribution to ∆CO2 in 2005: 10ppm over 101 (≈10%)


2.4. Details of regional budgets


Cross-Attribution Table, cumulated from 1700 to 2005 (in GtC):

C removal due over ↓ to →		N. America	S.&C. America	Europe	N. Africa & MEast	Trop. Africa	FSU	China	S.&S.E. Asia	Pacific Dvp.	n/a*
	N. America	-5.9	-2.5	-5.0	-0.5	-0.8	-3.1	-1.9	-2.5	-0.8	-0.2
စ္	S.&C. America	-15.6	-6.8	-12.9	-1.3	-2.3	-8.2	-4.9	-6.5	-2.3	-0.7
Terrestrial Biosphere	Europe	-0.7	-0.3	-0.6	-0.1	-0.1	-0.3	-0.2	-0.3	-0.1	0.0
	N. Africa & MEast	-0.2	-0.1	-0.2	-0.0	0.0	-0.1	-0.1	-0.1	0.0	0.0
	Trop. Africa	-0.3	-6.9	-3.1	-5.7	-0.6	-1.0	-3.6	-2.2	-2.9	-0.3
stri	FSU	-5.9	-2.4	-5.0	-0.4	-0.8	-3.1	-1.9	-2.4	-0.8	-0.2
Тепте	China	-1.7	-0.7	-1.5	-0.1	-0.2	-0.9	-0.6	-0.7	-0.2	-0.1
	S.&S.E. Asia	-4.3	-1.8	-3.6	-0.3	-0.6	-2.2	-1.4	-1.8	-0.6	-0.2
	Pacific Dvp.	-1.8	-0.8	-1.5	-0.2	-0.3	-1.0	-0.6	-0.8	-0.3	-0.1
Oceans**		-41.9	-17.3	-35.7	-3.4	-5.9	-22.1	-14.5	-17.4	-5.9	-1.7

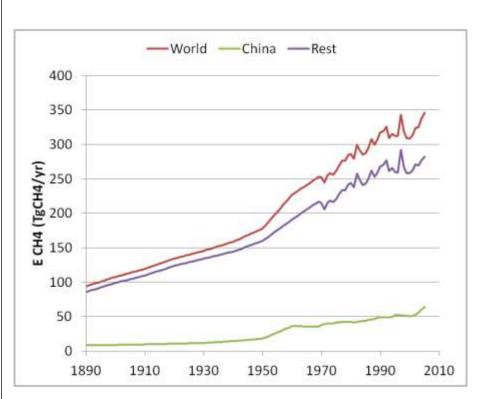
2.5. CH4 budget

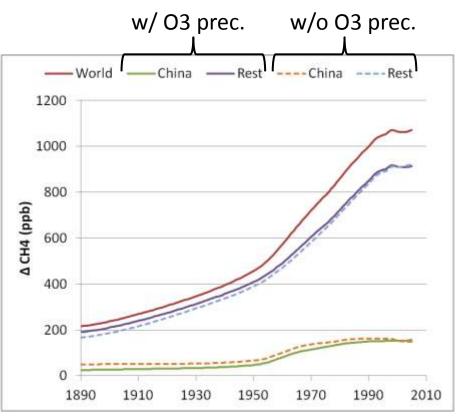
Sinks

2.6. CH4 attribution (1)

Budget equation:
$$\frac{dCH4_{atm}}{dt} = E(t) - S_{oh}(t) - S_{strato}(t) - S_{soils}(t)$$

With:
$$S_{oh}(t) = f_{oh}(CH4(t), O3P(t), T^{\circ}(t))$$


$$S_{strato}(t) = f_{st}(CH4(t))$$


$$S_{soils}(t) = f_{sl}(CH4(t))$$
'Secondary drivers'...

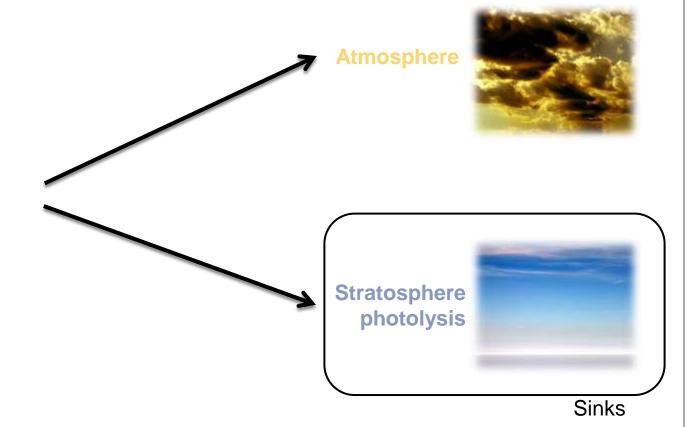
(Quick) attribution based on MAGICC:

- a global box model
- simple global atmospheric chemistry equilibrium equations, based on OxComp model intercomparison (O3P are NOx, VOC, CO)

2.6. CH4 attribution (2)

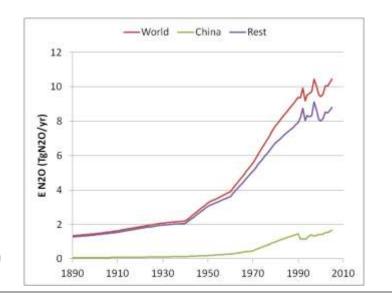
China's contribution to ∆CH4 in 2005: 158ppm over 1072 (≈15%)

2.7. N2O budget

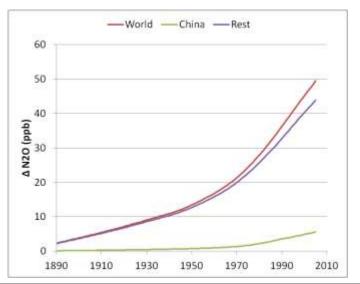


Industrial

2.8. N2O attribution

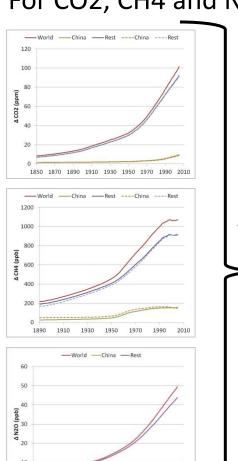

Budget equation:
$$\frac{dN2O_{atm}}{dt} = E(t) - S_{strato}(t)$$

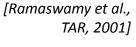
With:
$$S_{\text{strato}}(t) = f_{st}(N20(t))$$

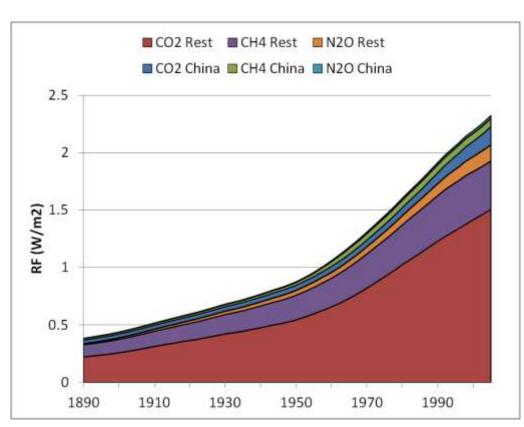

'Secondary' drivers?

(Quick) illustration with an IRF (τ =114yr):

$$\frac{dN2O_{atm}}{dt} = E(t) - N2O_{atm}(t)/\tau =>$$


$$=> N2O_{atm}(t) = \int_{0}^{t} E(t') \exp\left(-\frac{t-t'}{\tau}\right) dt'$$


(≈11%)


2.9. RF attribution

For CO2, CH4 and N2O:

1930 1950

China's contribution to RF (CO2,CH4,N2O) in 2005: 0.26 W/m2 over 2.32 (≈11%)

Discussion

21

A. Linearization Methods

A.1. Attribution coefficients

	ALL SOURCES	SOURCE over SOURCE ALI CHINA ONLY but CHINA	Delta (ALL- China-All but China)
GLOBAL	RF(W) = -0.12	RF(C) = 0.03 $RF(W-C) = 0.12$	-0.03
CHINA	-0.29	-0.18 (62%)	0.05

Direct method:
$$\xi(C) = RF(C)$$

 $\xi^*(C) = \frac{RF(C)}{RF(C) + RF(W-C)}$

Residual method:
$$\xi(C) = RF(W) - RF(W - C)$$

$$\xi^*(C) = \frac{RF(W) - RF(W - C)}{2RF(W) - RF(W - C) - RF(C)}$$

Advised by UNFCCC

A. Linearization Methods

A.2. Direct vs. Residual methods

	ALL SOURCES	SOURCE over SOURCE ALL CHINA ONLY but CHINA	Delta (ALL- China-All but China)
GLOBAL	RF(W) = -0.12	$RF(C) = _{+0.03} RF(W-C) = _{-0.12}$	0.03
CHINA	-0.29	-0.18 (62%)	0.05

	(W/m2)	World	China	Rest	
Direct	Global	-0.12	-0.04	-0.08	
	China	-0.29	-0.22 (75%)	-0.07	
qual	Global	-0.12	0.00	-0.12	
Residual	China	-0.29	-0.20 (68%)	-0.09	