

Vegetation dynamics in drylands: simulations and observations

Hongyan Liu

Contents

Scientific questions in drylands

Simulation and observation

Tree growth and forest NPP

Savanna vegetation dynamics

Threatens from drought

The impacts of climate change on water resources and agriculture in China

Piao et al., 2010

Vol 467 2 September 2010

Hundreds of thousands fled the 1930s US Dust Bowl; more drought-spurred migrations are expected.

The next dust bowl

Drought is the most pressing problem caused by climate change. It receives too little attention, says **Joseph Romm**.

Growth and die-off

Dieback and decline of Juniperus procera, Saudi Arabia (March 2006)

Carbon and water

Trading Water for Carbon with Biological Carbon Sequestration

Robert B. Jackson,^{1*} Esteban G. Jobbágy,^{1,2} Roni Avissar,³ Somnath Baidya Roy,³ Damian J. Barrett,⁴ Charles W. Cook,¹ Kathleen A. Farley,¹ David C. le Maitre,⁵ Bruce A. McCarl,⁶ Brian C. Murray⁷

Fig. 1. Changes in stream flow and annual renewable water as a function of plantation age, and the relative abundance of renewable water by country. Changes in stream flow in mm (A) and proportion (%) (C) as a function of plantation age. (D) Changes in annual renewable water (annual stream flow in mm divided by annual precipitation). (B) Average renewable freshwater (mm) versus mean annual precipitation (mm) by nation. The lines define 10%, 20%, and 30% renewable water as a percentage of MAP. See (13).

23 DECEMBER 2005 VOL 310 SCIENCE

Tree and grass

ECOLOGY

Grass Trumps Trees with Fire

Audrey L. Mayer and Azad Henareh Khalyani

ECOLOGY

When Juniper and Woody Plants Invade, Water May Retreat

Dense plants are taking over grasslands in many areas; researchers in the U.S. Southwest are studying how they tap into water supplies—and how to keep them in check

14 OCTOBER 2011 VOL 334 SCIENCE

12 DECEMBER 2008 VOL 322 SCIENCE

Simulation and observation

- Model simulation: The interacting climate, soil and fire effects are difficult to isolate or experimentally. manipulate in order to evaluate their impacts at spatial and temporal scales appropriate for assessing ecosystem dynamics.
- Field observation: To parameterize the model and to validate the simulation results, we need observation data
- Combined model simulation and field observation make future prediction possible.

Vertically distributed ecosystems on the Tianshan Mts.

H<1100 m: Desert

H=1100-1600 m: Desert steppe

H=1600-2100 m: Steppe

H=2100-2800 m: Forest

H=2800-3400 m: Alpine Meadow

Scientific questions

Growth of trees on temperate arid mountainous areas is constrained by temperature, precipitation, and CO_2 concentration; therefore, the interactions among them could be much more complicated than in ecosystems limited by a single factor. In what manner, and to what degree, the effect of CO_2 concentration rising is offset by shortage of available water or low temperature in the temperate arid mountains remains unclear.

NATURE VOL 429 10 JUNE 2004 www.nature.com/nature

letters to nature

Convergence across biomes to a common rain-use efficiency

Travis E. Huxman^{1*}, Melinda D. Smith^{2,3*}, Philip A. Fay⁴, Alan K. Knapp⁵, M. Rebecca Shaw⁶, Michael E. Loik⁷, Stanley D. Smith⁸, David T. Tissue⁹, John C. Zak⁹, Jake F. Weltzin¹⁰, William T. Pockman¹¹, Osvaldo E. Sala¹², Brent M. Haddad⁷, John Harte¹³, George W. Koch¹⁴, Susan Schwinning¹⁵, Eric E. Small¹⁶ & David G. Williams¹⁷

Vertical climate features

Monthly temperature

Monthly precipitation

Vertical vegetation belts

Tree-ring samples

- Individual trees: We sampled climate-sensitive isolated trees, at least 20 individuals in one site.
 Totally 11 sites in an elevation gradient are sampled
- 11 plots with size of 25 × 25 m² were selected from interior forest belt in three river basins. 40~70 individuals were sampled for each plot. Two rings, one in NS and the other in EW directions, were cored for each tree within the plot.
- ♦ $B = 0.06014 \times Ind^{2.5393}$
- $IPP = + \triangle B + D + G$

LPJ-DGVM Simulation

- LPJ: A process-based dynamic global vegetation model (DGVM).
- Historical climate data from 1901-2003 as input
- Three scenarios: 1) constant CO₂ concentration (317.2 ppm in 1961) since 1961; 2) doubling CO₂ concentration (634.4 ppm) since 1961; 3) ambient annual CO₂ concentration

Remote sensing image interpretation

- NDVI data sets used in this study were produced by the Global Inventory Monitoring and Modeling Studies (GIMMS) group using the AVHRR/NOAA series satellites, at a spatial resolution of 8*8 km² and 10-day interval, for the period from 1982 to 2000
- The horizontal extent of each vertical biome occupies 1~3 pixels perpendicularly in the 8 km-resolution NDVI data sets. Only those pixels fully covered by a definite biome were selected for calculation. At least 40 pixels for each biome were obtained. Each pixel contains 19 years of NDVI data, constituting a time series with 19 values. If the trend line has a slope >0, it indicates an increasing trend. If it passes the t-test with significant level of 0.05, it means a significant increasing trend

Patterns of ring-width change with elevation

Drought-forced individual tree growth

- Opposite roles from temperature and precipitation forces
- No evident change when approaching the timberline

Limitation by soil moisture

Elevation

High sensitivity of tree growth to soil moisture on the lower forest zone over the whole growing season

Decrease of tree growth sensitivity to soil moisture on the middle and upper forest zone

Age structure with elevation

Increased forest biomass and NPP during the last 40 years

- Increase of forest biomass in all plots
- Consistent increase trend between tree-ring estimated NPP and LPJsimulated NPP

Climate trend during the last 40 years

- Common significant increasing trend in precipitation and temperature was found only in winter.
- Soil moisture shows insignificant increase in all the months and seasons.

Drought-forced forest NPP increase

- The most evident correlation was found for soil moisture
- Soil moisture in the non-growing season, particularly in January to March, show no significant correlation with annual NPP, implying a time-lag between winter precipitation increasing and tree-growth enhancement

CO₂-forced forest NPP dynamics

The three CO₂ concentration scenarios produce consistent interannual variations in forest NPP

Synergetic effect between water and CO₂

- The NPP difference between doubling CO₂ and constant CO₂ scenarios is linearly related with the growing-season soil moisture, indicating a soil moisture associated CO₂ fertilization
- The doubling CO₂ concentration scenario has higher water use efficiencies than the constant CO₂ concentration scenario for most MAPs. Their difference insignificantly increases with MAP

Summary

- Different from the boreal forest in high latitudes, we highlight the role of non-growing season (winter) temperature on spring soil moisture for the temperate arid mountainous forest
- Both winter temperature and precipitation contribute to growing season soil moisture; however, the role of temperature and precipitation are opposite in spring and summer due to their different roles on soil moisture
- Our study further implies a synergetic effect between water and CO₂ on carbon fixation in temperate arid mountainous forest. High CO₂ concentration improves water use efficiency and further enhances carbon fixation, which was simply ascribed to CO₂ fertilization

Scientific question

- It was suggested that the two-layer root distribution determines treegrass coexistence in the Savanna (Walter, 1972).
- How does root distribution contribute to savanna vegetation patterns and dynamics?

Simulation experiments

Root Distribution		Two- layer separate	Even distributi on	Mixed distributi on	Topsoil only	Subsoil only
PFTs	TrBE	0	0.5	0.85	1	0
	TrBR	0	0.5	0.7	1	0
	TeNE	0	0.5	0.7	1	0
	TeBE	0	0.5	0.7	1	0
	TeBS	0	0.5	0.8	1	0
	C3	1	0.5	0.9	1	0
	C4	1	0.5	0.9	1	0

Simulated transect

The Karahari Transect

Simulated and observed tree covers

Tree-cover differences between fire-on and -off

- The highest correlation coefficient between simulated soil moisture and the Palmer Drought Severity Index (PDSI) occurs in the mixed root distribution, followed by the even root distribution
- The mixed root distribution assuming most of roots of both trees and grasses in the topsoil shows unexplainable fire disturbance on tree cover.

Simulated topsoil moisture with MAP

The evenly distributed fine roots sustain water uptake from both topsoil and subsoil

Savanna vegetation dynamics Summary

- The evenly distributed fine roots sustain water uptake from both topsoil and subsoil, which most likely contributes to a stable savanna.
- Mediation of fire on tree cover changes is different under the five simulated root distributions, implying a possible linkage between the root distribution and fire disturbance, whose mechanism needs further investigation.

Thank you for your attention!

Mailto: lhy@urban.pku.edu.cn