Vegetation dynamics in drylands:
simulations and observations

Hongyan Liu



“* Scientific questions in drylands

+* Simulation and observation

“*Tree growth and forest NPP

“*Savanna vegetation dynamics




The impacts of climate change on water
resources and agriculture in China
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Hundreds of thousands fled the 1930s US Dust Bowl; more drought-s purred migrations are expected.

The next
dust bowl

Drought is the most pressing problem caused by
climate change. [t receives too little attention, says
Joseph Romm.

| NATURE | VOL 478 | 27 OCTOBER 2011
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Localites with forest ity related to climatic siress from drought and high temperatures

Drought-induced mortality of Pinus Climate-induced morality of Pinus
sylvastrig, Andalucia, Spain (April 2006)

sylvesiris, Valais, Switzerland (1999)

Pinus yurmanensis stand, ¥ unmn

Severe moriality of oversiorey aspen (Popuius Province, China, show
tremuioides) following the 2001-2002 drought induced Iwa drought that resulted in
in the parkland zone of Saskatchewan, Canada of Tomicus y

and Tomicus minor shoot beetles
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Drought-induced death of Acacia
aneura, eastern Australia (2007)

y after warm htinth rly 20008, Ji - -
Unlted States: left. Pinus ponderosa martally (July 2006): right, mass morality of | /’
Pinus {1 survivors (May 2004)

A dust storm blows
through o stand of

., Acacia albidain the
" Sonegalese Sahel
where dicback wos
documentedin the last

half of the twentieth
century (1583)
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Mortality of Nothofagus dombey! in mixed
M. dombeyi-a.

induced by a warm drought in 1998-1900,
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procera, Saudi Arabia (March 2006)
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Fig. 1. Changes in stream flow and annual renewable water as a function of plantation age, and
the relative abundance of renewable water by country. Changes in stream flow in mm (A) and
proportion (%) (C) as a function of plantation age. (D) Changes in annual renewable water (annual
stream flow in mm divided by annual precipitation). (B) Average renewable freshwater (mm)
versus mean annual precipitation (mm) by nation. The lines define 10%, 20%, and 30% renewable
water as a percentage of MAP. See (73).
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Tree and grass

ECOLOGY

Grass Trumps Trees with Fire

Audrey L. Mayer and Azad Henareh Khalyani
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ECOLOGY

When Juniper and Woody Plants
Invade, Water May Retreat

Dense plants are taking over grasslands in many areas; researchers in the U.S. Southwest
are studying how they tap into water supplies—and how to keep them in check

. D&p-tiiirst. Junipers, the conical trees
concentrated in the center of this land-
- scape, are proliferating in grasslands,

12 DECEMBER 2008 VOL322 SCIENCE



“* Model simulation: The interacting climate, soil and fire

effects are difficult to isolate or experimentally.
manipulate in order to evaluate their impacts at spatial
and temporal scales appropriate for assessing
ecosystem dynamics.

“ Field observation: To parameterize the model and to
validate the simulation results, we need observation data

«» Combined model simulation and field observation make
future prediction possible.
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Vertlcally dlstrlbuted ecosystems on the Tlanshan Mts.

H<1100 m: Desert
H=1100-1600 m: Desert steppe
H=1600-2100 m: Steppe
H=2100-2800 m: Forest

® B i
O > e
o & [ v

e [ it
- 43°




tﬂ‘ll' 1 Ill'

:Eni'.'ﬁi

%ﬁ'fﬂ’:\qm .ﬁ.ﬂsL:w” W N FJ

14 1

Scientific questions

< Growth of trees on temperate arid mountainous areas is
constrained by temperature, precipitation, and CO,
concentration; therefore, the interactions among them
could be much more complicated than in ecosystems
limited by a single factor. In what manner, and to what
degree, the effect of CO, concentration rising is offset by
shortage of available water or low temperature in the
temperate arid mountains remains unclear.

letters to MNMature

NATURE | VOL 429| 10 JUNE 2004 | wyww.nature.com/nature

Convergence across biomes to
a common rain-use efficiency
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Vertical climate features
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Tree-ring samples

* Individual trees: We sampled climate-sensitive
Isolated trees, at least 20 individuals in one site.
Totally 11 sites in an elevation gradient are sampled

% 11 plots with size of 25 X 25 m?
were selected from interior forest
belt in three river basins. 40~70
individuals were sampled for each
plot. Two rings, one in NS and the
other in EW directions, were cored
for each tree within the plot.

< B =0.06014 XInd?-539%3
“* NPP=+AB+D+G
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LPJ-DGVM Simulation

% LPJ: A process-based dynamic

global vegetation model
(DGVM).

Historical climate data from
1901-2003 as input

Three scenarios: 1) constant
CO, concentration (317.2 ppm
In 1961) since 1961; 2)
doubling CO,, concentration
(634.4 ppm) since 1961; 3)
ambient annual CO,
concentration
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Remote sensmg image interpretation

*» NDVI data sets used in this study were produced by the Global
Inventory Monitoring and Modeling Studies (GIMMS) group using
the AVHRR/NOAA series satellites, at a spatial resolution of 8*8
km? and 10-day interval, for the period from 1982 to 2000

* The horizontal extent of each vertical biome occupies 1~3 pixels
perpendicularly in the 8 km-resolution NDVI data sets. Only those
pixels fully covered by a definite biome were selected for
calculation. At least 40 pixels for each biome were obtained. Each
pixel contains 19 years of NDVI data, constituting a time series with
19 values. If the trend line has a slope >0, it indicates an increasing
trend. If it passes the t-test with significant level of 0.05, it means a
significant increasing trend

L)
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Patterns of ring-width change with elevation
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Drought-forced Individual tree growth
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*» Opposite roles from temperature and precipitation forces
“* No evident change when approaching the timberline
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High sensitivity of tree growth
to soil moisture on the lower
forest zone over the whole
growing season

Decrease of tree growth sensitivity to
soil moisture on the middle and upper
forest zone
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Age structure with elevation
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Increased forest

lomass and NPP during the last 40 years
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+» Increase of forest biomass in all
plots

+» Consistent increase trend between
tree-ring estimated NPP and LPJ-
simulated NPP
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Climate trend during the last 40 years
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< Common significant increasing trend in precipitation and temperature
was found only in winter.

< Soll moisture shows insignificant increase in all the months and
seasons.
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Drought-forced forest NPP increase
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+» The most evident correlation was found for soil moisture

% Soil moisture in the non-growing season, particularly in January to March,
show no significant correlation with annual NPP, implying a time-lag
between winter precipitation increasing and tree-growth enhancement
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COZ—forced forest NPP dynamics
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% The three CO, concentration scenarios produce consistent
interannual variations in forest NPP
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Synergetic effect between water and CO,
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< The NPP difference between doubling CO, and constant CO,
scenarios is linearly related with the growing-season soil moisture,
Indicating a soil moisture associated CO, fertilization

< The doubling CO, concentration scenario has higher water use
efficiencies than the constant CO, concentration scenario for most
MAPs. Their difference insignificantly increases with MAP
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Summary

«» Different from the boreal forest in high latitudes, we highlight
the role of non-growing season (winter) temperature on spring
soil moisture for the temperate arid mountainous forest

*» Both winter temperature and precipitation contribute to
growing season soil moisture; however, the role of
temperature and precipitation are opposite in spring and
summer due to their different roles on soil moisture

« Our study further implies a synergetic effect between water
and CO, on carbon fixation in temperate arid mountainous
forest. High CO, concentration improves water use efficiency
and further enhances carbon fixation, which was simply
ascribed to CO, fertilization
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Scientific question

“ It was suggested 100
that the two-layer .
root distribution .

determines tree-
grass coexistence
In the Savanna
(Walter, 1972).

s How does root
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Woocdy cover (%)
I
=
1

distribution

contribute to 20

savanna vegetation

patterns and 0

dynamics? 0 200 400 600 800 1,000 1,200

MAP (mm)
MATURE| Vol 438|8 December 2005
Sakharan et al., 2005)
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Slmulatlon experiments

Root Distribution Two- Even Mixed  Topsoil  Subsoil
layer  distributi distributi only only
separate on on
TrBE 0 0.5 0.85 1 0
TrBR 0 0.5 0.7 1 0
TeNE 0 0.5 0.7 1 0
PFTs TeBE 0 0.5 0.7 1 0
TeBS 0 0.5 0.8 1 0
C3 1 0.5 0.9 1 0
C4 1 0.5 0.9 1 0
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Simulated transect

The Karahari Transect

100 1000 mm
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Simulated and observed tree covers

Tree cover (%)
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a half-half fine root distribution for both
trees and grasses in topsoil and subsoil
respectively, matches those derived from
field surveys

°
A. t.ﬂ; o Two-layer separate
o Even distribution

Topsoil only
Subsoil only
Observed

O
®
A Mixed distribution
A
m
+

I ! | ! | ! I ! I
200 400 600 800 1000
MAP (mm)



"‘n;,‘

t

kit
EEld;v A -ua AHOME

D E

J [

Tree-cover differences between fire-on and -off

“* The highest correlation coefficient between simulated
soil moisture and the Palmer Drought Severity Index
(PDSI) occurs in the mixed root distribution, followed by
the even root distribution

“* The mixed root
distribution assuming
most of roots of both
trees and grasses in the
topsoil shows
unexplainable fire
disturbance on tree
cover.

Tree cover difference (%)

O Two-layer separate
® Even distribution
q A Mixed distribution
A Topsoil only
®  Subsoil only

T T T T T T T 1
200 400 600 800 1000
MAP (mm)
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I ted topsoil moisture with I\/IAP

% The evenly distributed fine roots sustain water uptake
from both topsoil and subsaoill
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Summary

“* The evenly distributed fine roots sustain water uptake
from both topsoil and subsoil, which most likely
contributes to a stable savanna.

“* Mediation of fire on tree cover changes is different
under the five simulated root distributions, implying a
possible linkage between the root distribution and fire
disturbance, whose mechanism needs further
Investigation.
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