
Coupling carbon and water cycles in global vegetation models

Ben Poulter (benjamin.poulter@lsce.ipsl.fr)

Goal of lecture

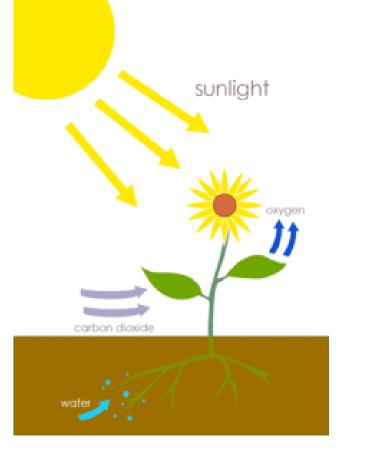
- Conceptual
 - Canopy processes
 - Photosynthesis
 - Conductance
- Technical
 - Approaches for modeling photosynthesis
 - Coupling photosynthesis and conductance

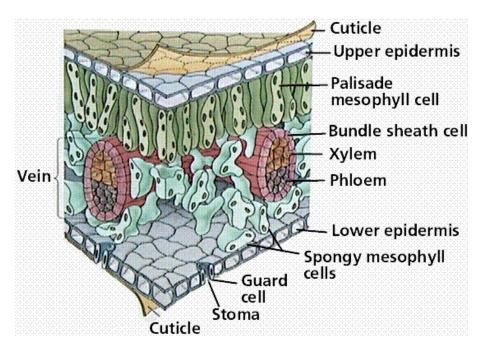
Some variables

- A (µmol m⁻² s⁻¹): gross photosynthesis
- Anet (µmol m⁻² s⁻¹): photosynthesis Rd
- Rd (µmol m⁻² s⁻¹): leaf respiration
- gs (mol m⁻² s⁻¹): stomatal conductance
- gc (mol m⁻² s⁻¹): canopy conductance
- VPD (kPa): vapor pressure deficit
- RH (%): relative humidity
- Ci (ppm): leaf internal CO₂ concentration
- Ca (ppm): atmospheric CO₂ concentration

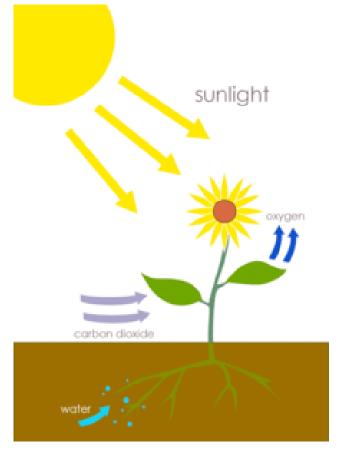
Photosynthesis

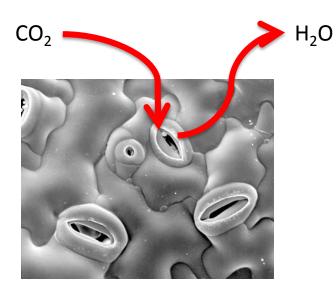
- Conversion of CO₂ to organic compounds (mainly sugars) using energy from sunlight
- 3.5 billion year old process
- Conducted by plants, algae, ba
- Oxygen (O₂) is a waste product
- Globally, captures 100 Terawat
- Global NPP 100-115 PgC




Photosynthesis

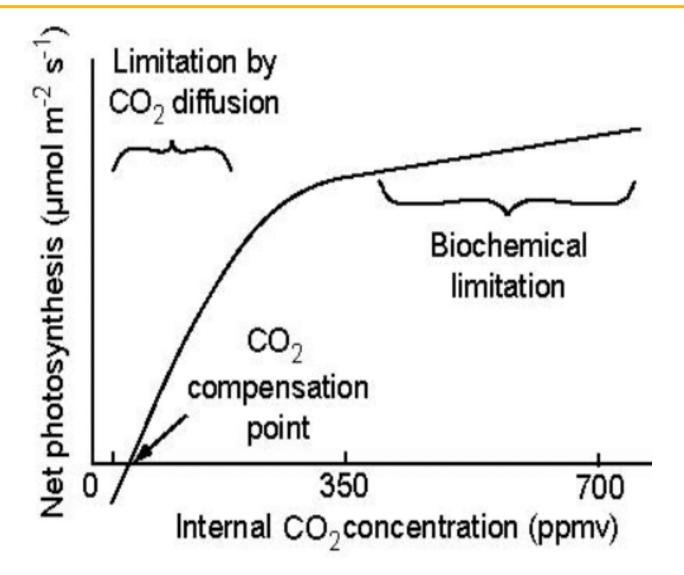
Photosynthesis





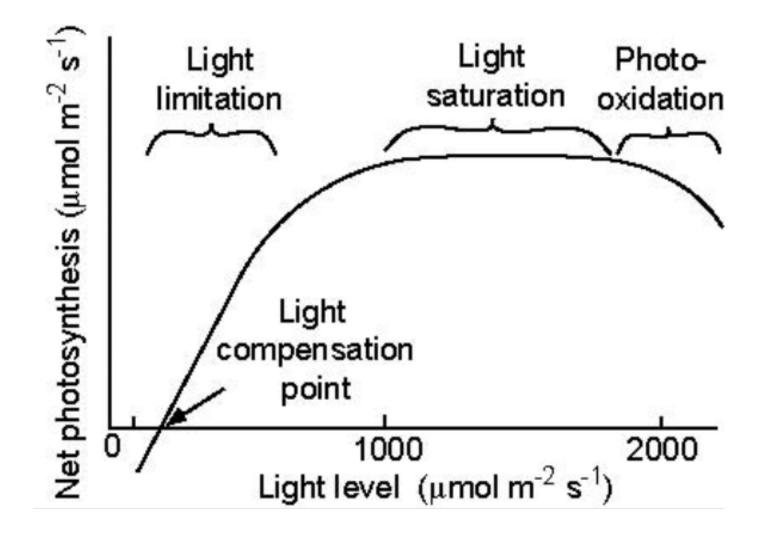
$CO_2 + H_2O + light \rightarrow CH_2O + O_2$

Photosynthesis



Trade off: Gain carbon and water loss

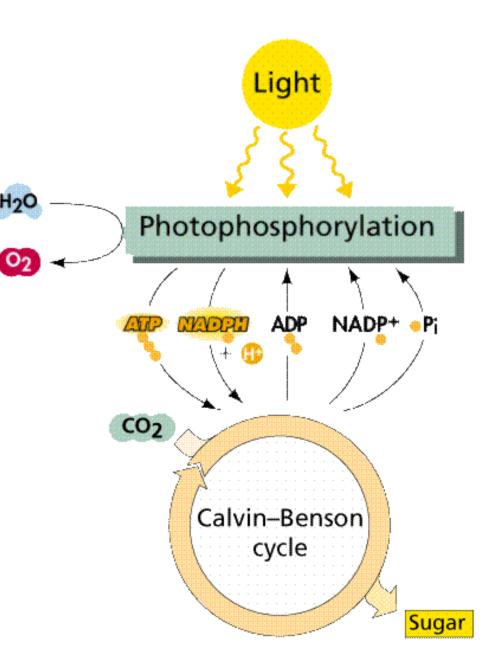
$CO_2 + H_2O + light \rightarrow CH_2O + O_2$



CO₂ response curve of photosynthesis

Light response curve of photosynthesis

Calvin cycle


Photosynthesis Two sets of reactions:

Light harvesting

- converts light energy to chemical energy (ATP, NADPH)
- splits H₂O and produces O₂ as byproduct

Carbon fixing

 uses ATP and NADPH from light reactions to fix CO₂ into sugar

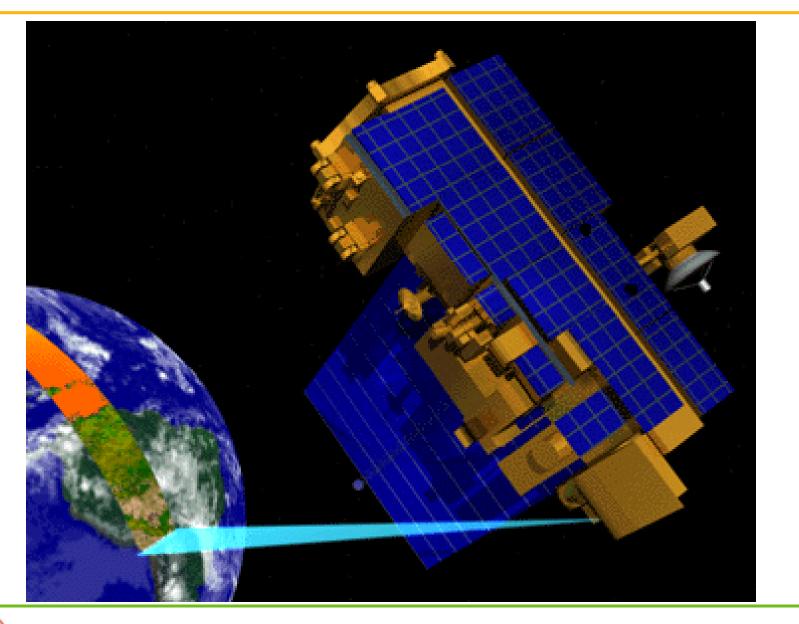
Models for photosynthesis

1. Empirical

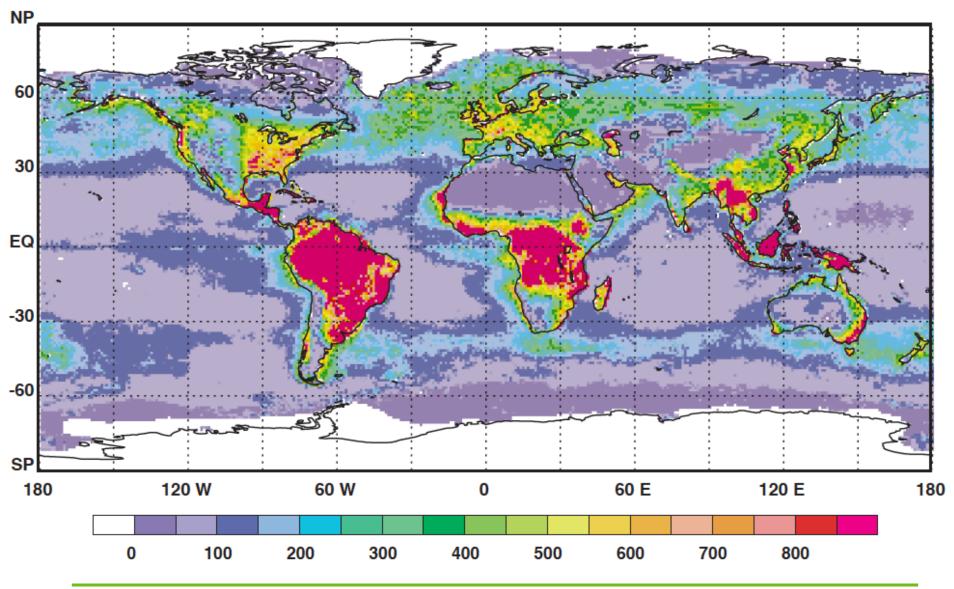
- Light-use efficiency
- 2. Mechanistic
- Diffusion based
- 3. Semi-empirical
- Biochemical

Montieth 1977: Biomass accumulation correlated with light interception

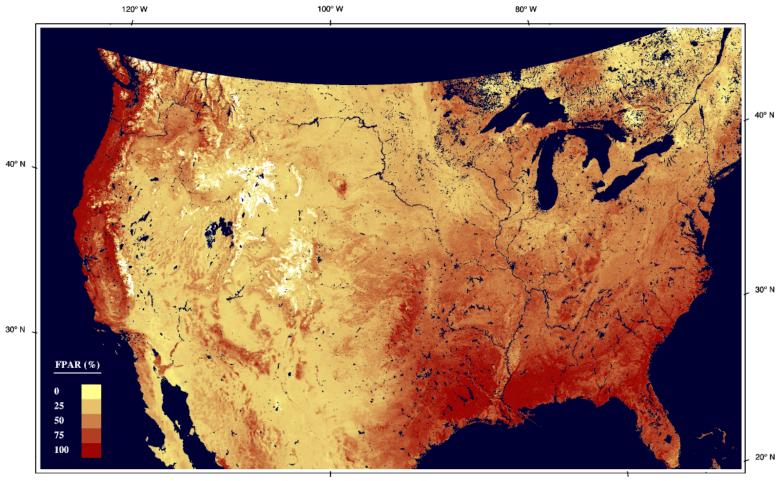
"Conversion efficiency" can be used to estimate gross primary production


Global estimates first used in CASA (Field et al. 1998, Sellers et al. 1992):

 $NPP = f(NDVI) \times PAR \times \varepsilon^* \times g(T) \times h(W)$

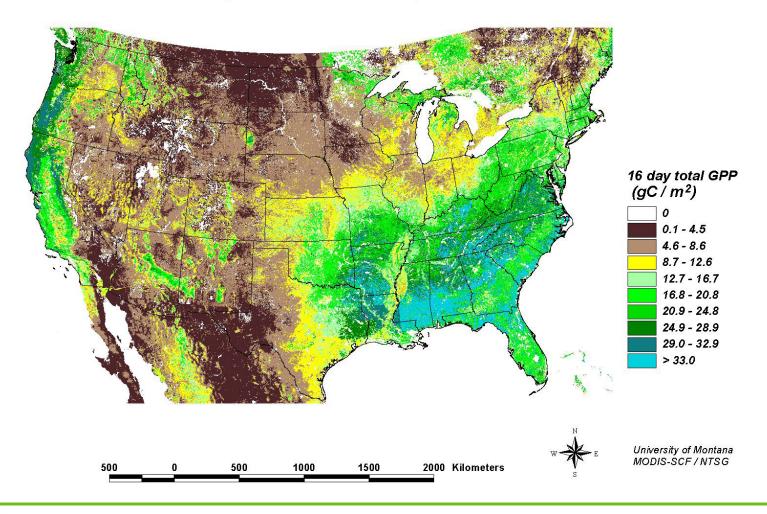

Later used in BIOME BGC and MODIS NPP models

Limited to period of calibration



MODIS FPAR

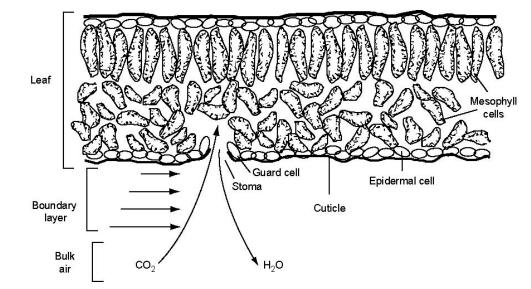
(Fraction of Photosynthetically Active Radiation) Composite March 24 - April 8, 2000



University of Montana

Science Compute Facility

United States MODIS Land Gross Primary Production 16 day total, March 26 - April 10, 2000



Models for photosynthesis

Fick's law of diffusion

- 1. Empirical
- Light-use efficiency
- 2. Mechanistic
- Diffusion based
- 3. Semi-empirical
- Biochemical

$$A_{n,leaf} = g_c (C_{ca} - C_{ci})$$

Does not work well for low light & high humidity

Models for photosynthesis

- 1. Empirical
- Light-use efficiency
- 2. Mechanistic
- Diffusion based
- 3. Semi-empirical
- Biochemical

$$J_{E} = \frac{\alpha_{p} e_{m} Q_{p} (C_{ci} - \Gamma^{*})}{(C_{ci} - 2\Gamma^{*})}$$

$$F^{*} = \frac{C_{oa}}{2\tau}$$

$$A = \min \begin{cases} J_{E} \\ J_{C} \\ J_{S} \end{cases} \qquad J_{C} = \frac{V_{m} (C_{ci} - \Gamma^{*})}{C_{ci} + K_{c} (1 + C_{oa} / K_{o})}$$

$$J_{S} = V_{m} / 2$$

Farquhar 1980 Collatz 1991

Models for photosynthesis

- 1. Empirical
- Light-use efficiency
- 2. Mechanistic
- Diffusion based
- 3. Semi-empirical
- Biochemical

$$A = \min \begin{cases} J_E \\ J_C \\ J_S \end{cases} \quad R_d = \frac{R_{d,25} \exp[0.069(T_L - 25)]}{1 + \exp[1.3(T_L - 55)]}$$

$$K_c, \tau, K_o, V_m, R_d$$

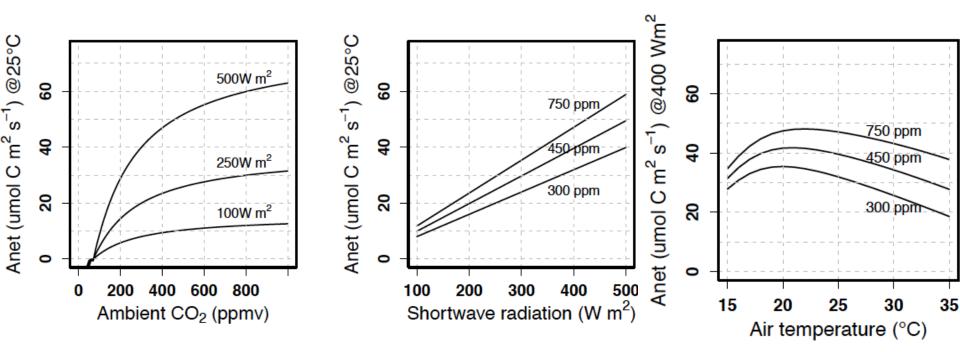
 $V_m = \frac{V_{m,25} \exp[0.088(T_L - 25)]}{1 + \exp[0.29(T_L - 41)]}$

$$k = k_{25} \exp[q(T_L - 25)]$$

Models for photosynthesis

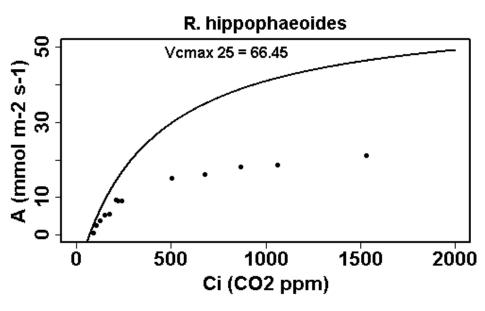
$$J_{p} = \frac{J_{E} + J_{C} - \sqrt{(J_{E} + J_{C})^{2} - 4\theta J_{E} J_{C}}}{2\theta}$$
$$= \min \begin{cases} J_{E} \\ J_{C} \\ J_{S} \end{cases} \qquad \qquad A = \frac{J_{p} + J_{S} - \sqrt{(J_{p} + J_{S})^{2} - 4\beta J_{p} J_{S}}}{2\beta}$$

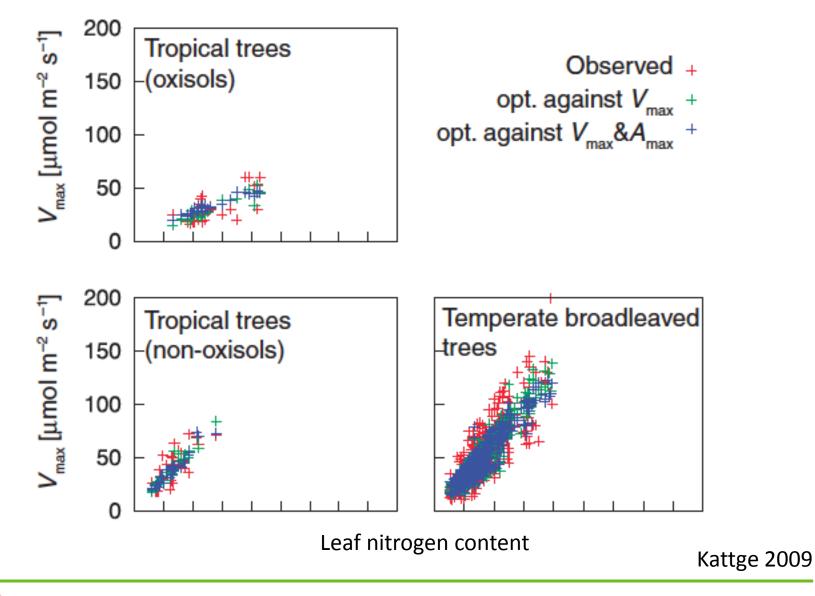
$$A_{net} = A - R_d \qquad \qquad R_d = 0.015 V_m$$


Co-limitation rather than sharp transition

- No co-limitation in ORCHIDEE
- Strong colimitation in LPJ (no Js)

 \boldsymbol{A}


Biochemical model response curves


- Vcmax and Ci are needed
- Vcmax: Maximum rate of carboxylation
- Measure with:
 - Field measurements

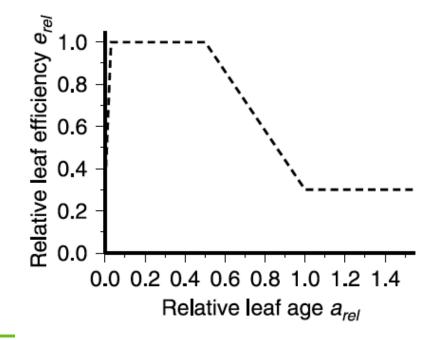
$$J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{oa} / K_{o})}$$

- Vcmax and Ci are needed
- Vcmax: Maximum rate of carboxylation
- Measure with:
 - Field measurements
 - Modeled (Haxeltine and Prentice 1996)
 - Optimization algorithm based on evidence that N content and Rubisco activity vary vertically within the canopy and seasonally
 - Takes form of light-use efficiency model

$$V_{\rm m} = (1 / b_{\rm C3}) (C I_{\rm C3} / C 2_{\rm C3}) [(2\theta - 1)s - (2\theta s - C 2_{\rm C3})\sigma]$$
 APAR

$$J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{oa} / K_{o})}$$

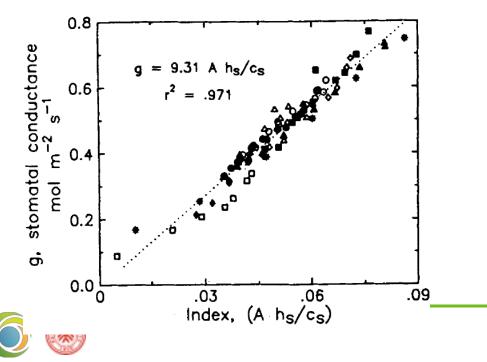
- Vcmax and Ci are needed
- Vcmax: Maximum rate of carboxylation
- Measure with:
 - Field measurements
 - Modeled (Haxeltine and Prentice 1996)
 - Estimate from leaf nitrogen (Cox 1998)

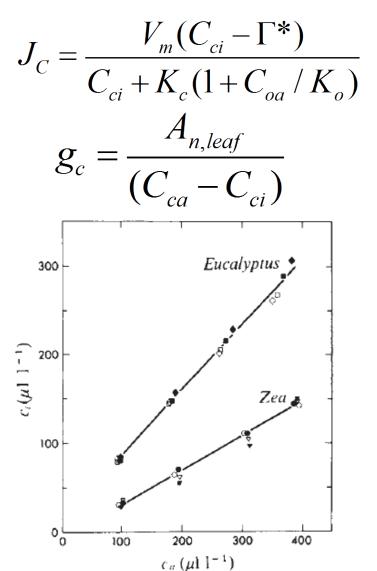

$$V_{c,\max} = n_2 N$$

$$J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{oa} / K_{o})}$$

- Vcmax and Ci are needed
- Vcmax: Maximum rate of carboxylation
- Measure with:
 - Field measurements
 - Modeled (Haxeltine and Prentice 1996)
 - Estimate from leaf nitrogen (Cox 1998)
 - Prescribe from observation (Viovy 1996)
 - Modify for leaf age
 - Soil moisture
 - Canopy position (follow light extinction)

$$J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{oa} / K_{o})}$$





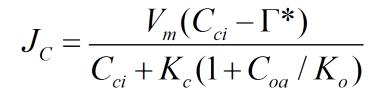
Internal leaf CO₂ concentration

- Still need Ci
- Depends on stomata and rate of photosynthesis
- Constant Ci/Ca (Wong 1979

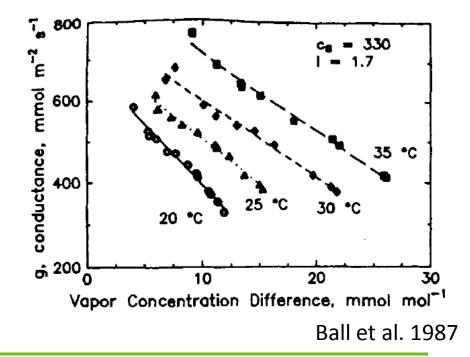
Suggests stomates optimize A / T

Internal leaf CO₂ concentration

 $J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{ci} / K_{c})}$


- Still need Ci
- Depends on stomata and rate of photosynthesis
- Constant Ci/Ca (Wong 1979
 - Suggests stomates optimize A / T

$$A_{n,leaf} = g_c (C_{ca} - C_{ci}) \quad \Rightarrow \quad C_{ci} = \frac{A_{n,leaf}}{g_c} + C_{ca}$$


Internal leaf CO₂ concentration

 Conductance model is required to relate assimilation and stomatal conductance to the gradient of CO₂ between the atmosphere and Rubisco

- Stomata respond to:
 - Light
 - CO2
 - Humidity
 - VPD
 - Soil moisture
- Ball-Berry model:

$$g_{cs} = m \frac{A_n h_s}{C_{cs}} + b$$

Internal leaf CO₂ concentration

 Conductance model is required to relate assimilation and stomatal conductance to the gradient of CO₂ between the atmosphere and Rubisco

$$J_{C} = \frac{V_{m}(C_{ci} - \Gamma^{*})}{C_{ci} + K_{c}(1 + C_{oa} / K_{o})}$$

- Stomata respond to:
 - Light
 - CO2
 - Humidity
 - VPD
 - Soil moisture
- Simultaneous solution for A, Ci, and Gc

$$g_{cs} = m \frac{A_n h_s}{C_{cs}} + b \qquad A_{n,leaf} = g_c (C_{ca} - C_{ci}) \qquad A_{net} = A - R_d$$

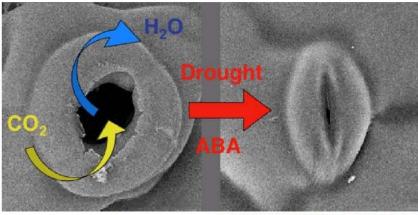
Model application

• ORCHIDEE

- Farquhar photosynthesis
 - Vmax age and soil moisture limited
- Ball-Berry conductance model
 - No direct soil moisture limitation

Table 1. PFTs and PFT-Specific Parameters in ORCHIDEE^a

PFT	V _{cmax,opt}	T_{opt}	λ_{max}	Zroot	α_{leaf}	h	A_c	T_s	H_s
TrBE	50	37	10	1.25	0.12	25	910	-	0.3
TrBR	60	37	10	1.25	0.14	25	180	-	0.3
TeNE	37.5	27	5	1.	0.14	15	910	-	-
TeBE	37.5	32	5	1.25	0.14	15	730	-	-
TeBS	37.5	28	5	1.25	0.14	15	180	12.5	-
BoNE	37.5	25	4.5	1.	0.14	10	910	-	-
BoBS	37.5	25	4.5	1.	0.14	10	180	5	-
BoNS	35	25	4	1.25	0.14	10	180	7	-
NC3	70	$27.5 + 0.25T_l$	2.5	0.25	0.20	0.2	120	4	0.2
NC4	70	36	2.5	0.25	0.20	0.2	120	5	0.2
AC3	90	$27.5 + 0.25T_l$	6	0.25	0.18	0.4	150	10	0.2
AC4	90	36	3	0.25	0.18	0.4	120	10	0.2


Model application

Symbol	Value	Units	Q_{10}	Description
K_c CO ₂	30 ^a	Pa	2.1	Michaelis constant for
Ko	30 ^a	kPa	1.2	Michaelis constant for O2
τ	2600 ^b		0.57	CO ₂ /O ₂ specificity ratio
α_{C3}	0.08 ^a			C ₃ quantum efficiency
b_{C3}	0.015 ^c			R _d /V _m ratio for C ₃ plants
λ_{mC3}	0.7^{d}			optimal c _i /c _a for C ₃ plants
α_{C4}	0.053 ^e			C ₄ quantum efficiency
b_{C4}	0.035			R_d/V_m ratio for C_4 plants
λ_{mC4}	0.4			optimal c_i/c_a for C_4 plants
α_{a}	0.5			scaling parameter for α
c_a	340	µmol mol	1	ambient mole fraction CO ₂
Р	100	kPa		atmospheric pressure
O ₂	20.9	kPa		partial pressure O ₂
Cmass	12	g mol ⁻¹		molar mass of carbon
k	0.5 ^f			extinction coefficient
θ	0.7 ^g			co-limitation parameter

Model application

- LPJ
 - Farquhar photosynthesis
 - No soil moisture limitation
 - Haxeltine conductance model
 - If not enough soil moisture to sustain potential conductance, Gc is reduced, and Ci is reduced

Stomata in plant leaves

www.isv.cnrs-gif.fr/jg/images/stomata.jpg

Scaling from leaves to canopies

- Real canopies
 - LAI gradients
 - Leaf angle
 - Shade/sun
 - N gradients
 - Light gradients
 - ..

FPAR = 1 - exp(-k LAI)

$$N_0 = N_{can} k / f_{PAR}$$

$$A_{can} = A_0 f_{PAR} / k$$

- Big leaf: assumes that canopy carbon fluxes have the same relative responses to the environment as any single leaf, and that the scaling from leaf to canopy is therefore linear.
 - Beer's Law
 - Integrate over vertical canopy layers
- Two-layer:
 - Sun shade division
 - Diffuse vs direct light

Take home message

- Coupled approach must be used to model photosynthesis (Anet)
 - Gc
 - Ci
- Leaf to canopy scaling requires integration over non-linear processes
- Move beyond semi-empirical approaches
 Medlyn 2011

 $E - \lambda A$

- Plenty of uncertainties to explore
 - Temperature sensitivities
 - Light sensitivities
 - CO₂ sensitivities
 - Nutrient sensitivities
 - Vcmax
 - Vertical canopy gradients

Recommended reading

- Books
 - <u>An introduction to environmental biophysics</u> (Campbell and Norman 1998)
 - <u>Physicochemical and Environmental Plant Physiology</u> (Nobel 1999)
- Some papers
 - Wong, S. and I. F. Cowan, G. (1979). "Stomatal conductance correlates with photosynthetic capacity." <u>Nature 282</u>: 424-426.
 - Farquhar, G. D., S. von Caemmerer, et al. (1980). "A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species." <u>Planta 149</u>: 78-90.
 - Collatz, G. J., J. T. Ball, et al. (1991). "Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer." <u>Agricultural and Forest Meteorology</u> 54: 107-136.
 - Sellers, P. J., J. A. Berry, et al. (1992). "Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme." <u>Remote Sensing of Environment 42</u>: 187-216. Friend, A. D. (2001). "Modelling canopy CO2 fluxes: Are 'Big-Leaf' simplifications justified?" <u>Global Ecology and Biogeography 10(6): 603-619.</u>
 - Damour, G., T. Simonneau, et al. (2010). "An overview of models of stomatal conductance at the leaf level." <u>Plant, Cell and Environment 33</u>: 1419-1438.
 - Medlyn, B. E., R. A. Duursma, et al. (2011). "Reconciling the optimal and empirical approaches to modelling stomatal conductance." <u>Global Change Biology: doi: 10.1111/j.1365-2486.2010.02375.x.</u>

