Data assimilation for large state vectors

Frédéric Chevallier

Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette

France

Objective

- Overview of data assimilation methods for large state vectors, from the point of view of CO_{2} flux inversion
- Outline
- Analytical formulation
- Variational formulation
- Monte Carlo formulation
- Diagnostics
- Prospects

The linear problem with Gaussian error statistics and zero biases

LSCE

$n \in \mathbb{N}, \varphi \in \mathbb{R}^{n}, \mu \in \mathbb{R}^{n}, \boldsymbol{\Sigma} \in M(n, \mathbb{R})$ positive definite

$$
p(\varphi)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\varphi-\mu)^{T} \Sigma^{-1}(\varphi-\mu)}
$$

$$
\mathbf{y}=\mathbf{H x}+\varepsilon
$$

$-2 \ln p(\mathbf{x} \mid \mathbf{y})=\left(\mathbf{x}-\mathbf{x}_{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+(\mathbf{H} \mathbf{x}-\mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \mathbf{x}-\mathbf{y})+c$
x: state vector
\mathbf{x}_{b} : expected value of the prior pdf of \mathbf{x} y: observation vector
H: linear observation operator
B: Prior error covariance matrix
R: observation error covariance matrix

$\mathbf{H x}_{b}, \mathbf{H B H}^{\top}$

Analytical solution

- Expected value of the posterior PDF

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right)
$$

- Covariance of the posterior PDF

$$
\mathbf{A}=\mathbf{B}-\mathbf{K H B}
$$

- Gain matrix

$$
\mathbf{K}=\mathrm{BH}^{\mathrm{T}}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1}
$$

$\mathbf{x a}_{\mathrm{a}}, \mathrm{A}$

$H x_{a}, H A H^{\top}$
y, \mathbf{R}
$\mathbf{H x}_{b}, \mathbf{H B H}^{\top}$

Example

- $x_{b}=15.0, \sigma_{b}=1.0$
$\mathbf{K}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1}$
- $y=15.5, \sigma_{y}=0.5$
$\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right)$
- $\mathrm{h}=1$
$\mathbf{A}=\mathbf{B}-\mathbf{K H B}$
- $k=1.0^{2} /\left(0.5^{2}+1.0^{2}\right)=0.8$
- $x_{a}=15.0+0.8(15.5-15.0)=15.4$
- $\sigma_{a}=\sqrt{ }\left(1.0^{2}(1-k)\right) \approx 0.45$

Assigning errors

- Variances, correlations
- B:
- Prior errors

○ R:

- Measurement errors
- Representation errors
- Errors of the observation operator H

Implementation

- Inversion system $\mathbf{K}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1}$

$$
\begin{aligned}
& \mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right) \\
& \mathbf{A}=\mathbf{B}-\mathbf{K H B}
\end{aligned}
$$

- $\mathbf{B}, \mathbf{R}, \mathbf{x}_{\mathrm{b}}, \mathbf{y}$ and H given
- Issues:
- Compute H
- from H
- Exact derivatives
- Finite differences
- Matrix inversion
- In practice, restricted to ranks $<10^{5}$

Non-linear observation operator

- In the tangent-linear hypothesis, the non-linear operators are linearized in the vicinity of some state of \mathbf{x}
- $H[\mathbf{x}] \sim H\left[\mathbf{x}_{b}\right]+\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{b}\right)$
- Loss of optimality
- Statistics less Gaussian
- The degree of linearity is relative to $\mathbf{x}-\mathbf{x}_{b}$

Non-linear observation operator

- In the tangent-linear hypothesis, the non-linear operators are linearized in the vicinity of some state of \mathbf{x}
- $H[\mathbf{x}] \sim H\left[\mathbf{x}_{b}\right]+\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{b}\right)$
- Possible inner loop/ outer loop system
- $H[\mathbf{x}] \sim H\left[\mathbf{x}_{\mathrm{a}}{ }^{i}\right]+\mathbf{H}_{\mathrm{i}}\left(\mathbf{x}-\mathbf{x}_{\mathrm{a}}{ }^{\mathrm{i}}\right)$
- Repeat the inversion keeping \mathbf{x}_{b} constant and updating \mathbf{H}_{i}

$$
\begin{aligned}
& \mathbf{K}_{\mathrm{i}}=\mathrm{BH}_{\mathrm{i}}^{\mathrm{T}}\left(\mathbf{H}_{\mathrm{B}} \mathrm{BH}_{\mathrm{i}}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \\
& \mathbf{x}_{a}^{\mathrm{i}}=\mathbf{x}_{b}+\mathbf{K}_{\mathrm{i}}\left(\mathbf{y}-\mathbf{H}_{\mathbf{1}}\right)
\end{aligned}
$$

Outline

- Analytical formulation
- Variational formulation
- Monte Carlo formulation
- Diagnostics
- Prospects

Variational solution

\qquad

- The linear problem with Gaussian error statistics and zero biases
$-2 \ln p(\mathbf{x} \mid \mathbf{y})=\left(\mathbf{x}-\mathbf{x}_{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+(\mathbf{H} \mathbf{x}-\mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \mathbf{x}-\mathbf{y})+c$
- \mathbf{x}_{a} minimises $J(\mathbf{x})=-2 \ln p(\mathbf{x} \mid \mathbf{y})$

$$
\nabla J(\mathbf{x})=2 \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+2 \mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{H x}-\mathbf{y})
$$

- Covariance of the posterior PDF:

$$
\mathbf{A}=2\left[J^{\prime \prime}\left(\mathbf{x}_{a}\right)\right]^{-1}
$$

Implementation

- Inversion system:
$J(\mathbf{x})=\left(\mathbf{x}-\mathbf{x}_{b}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+(\mathbf{H x}-\mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H x}-\mathbf{y})$
$\nabla J(\mathbf{x})=2 \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+2 \mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{H x}-\mathbf{y})$
$\mathbf{A}=2\left[J^{\prime \prime}\left(\mathbf{x}_{a}\right)\right]^{-1}$
- B, R, $\mathbf{x}_{b}, \mathbf{y}$ and H given
- Issues:
- Compute \mathbf{H} and \mathbf{H}^{\top}
- Invert B and R
- Minimisation method $\left(\operatorname{grad}\left(J\left(\mathbf{x}_{\mathrm{a}}\right)\right) \sim 0\right)$
- Compute and invert J"

Compute \mathbf{H} and \mathbf{H}^{\top}

$$
\nabla J(\mathbf{x})=2 \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{\mathbf{b}}\right)+2 \mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{y}-H[\mathbf{x}])
$$

- H: Tangent-linear operator (Jacobian matrix) H
- \mathbf{H}^{\top} : Adjoint matrix of \mathbf{H}
- Chain rule:
- $\mathbf{H x}=\mathbf{H}_{\mathrm{n}} \mathbf{H}_{\mathrm{n}-1} \ldots \mathbf{H}_{2} \mathbf{H}_{1} \mathbf{x}$
- $\mathbf{H}^{\top} \mathbf{y}^{\boldsymbol{*}}=\mathbf{H}_{!}^{\top} \mathbf{H}_{2}{ }^{\boldsymbol{\top}} \ldots \mathbf{H}_{\mathrm{n}-1}{ }^{\boldsymbol{\top}} \mathbf{H}_{\mathrm{n}}{ }^{\top} \mathbf{y}^{*}$
- First order Taylor development of each individual line of code

Adjoint technique

- Example:
- Compute the adjoint instruction of the line:
- $a=b^{2}$
- Forward statement
o $a=b^{2}$
- Tangent-linear statement $\mathbf{y}=\mathbf{H x}$
- $\delta b=0 . \delta a+1 . \delta b$
- $\delta \mathrm{a}=0 . \delta \mathrm{a}+2 \mathrm{~b} . \delta \mathrm{b}$
- Adjoint statement $\mathbf{x}^{*}=\mathbf{H}^{\boldsymbol{\top}} \mathbf{y}^{*}$
- b* = 2ba*+1.b*
- a* $=0 . a^{*}+0 . b^{*}$

Adjoint technique

- Example:
- Compute the adjoint instruction of the line:
- $a=a^{2}$
- Forward statement
$o a=a^{2}$
- Tangent-linear statement $\mathbf{y}=\mathbf{H x}$
- $\delta a=2 a . \delta a$
- Adjoint statement $\mathbf{x}^{*}=\mathbf{H}^{\boldsymbol{\top}} \mathbf{y}^{*}$
- $a^{*}=2 a \cdot a^{*}$

Handling the linearization points

- Handling of trajectory
- The derivatives in \mathbf{H} are a function of \mathbf{x}
- $\mathbf{H x}=\mathbf{H}_{n} \mathbf{H}_{n-1} \ldots \mathbf{H}_{2} \mathbf{H}_{1} \mathbf{x}$ (forward)
- $\mathbf{H}^{\top} \mathbf{y}^{*}=\mathbf{H}_{!}^{\top} \mathbf{H}_{2}{ }^{\boldsymbol{\top}} \ldots \mathbf{H}_{\mathrm{n}-1}{ }^{\boldsymbol{\top}} \mathbf{H}_{\mathrm{n}}{ }^{\top} \mathbf{y}^{*}$ (backward)
- Linearization points for the adjoint
- Stored in computer memory
- Stored on disk
- Recomputed on the fly
- Some mixture of the above

Which code?

- Adjoint of full code or of simplified version?
- Time handling

$$
\circ \mathbf{H}_{\mathrm{t}}(\mathrm{x}) \sim \mathbf{H}(\mathrm{x})
$$

- Spatial resolution
$\circ \mathbf{H}_{H R}(x) \sim H_{L R}(x)$
- Sophistication of physics

Adjoint coding

- Manual coding
- Automatic differentiation
- 41 softwares currently listed on http://www.autodiff.org
- Source code transformation
- From the original code
- From a recoded version
- Operator overloading
- Freeware or not
- Correctness of the TL
- Linearity
- Convergence of the Taylor development towards the NL code
- Correctness of the AD...
- Linearity
- $\mathbf{(H x})^{\top} \mathbf{H x}=\mathbf{x}^{\top} \mathbf{H}^{\top}(\mathbf{H x})$
- ... to the machine epsilon (relative error due to rounding in floating point arithmetic)

Invert R matrix

$$
\nabla J(\mathbf{x})=2 \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{\mathbf{b}}\right)+2 \mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{y}-H[\mathbf{x}])
$$

- Try to have R diagonal
- Ignore correlations
- Observation thinning
- Increase variances and set correlations to zero
- Block-diagonal R
- Directly define the precision matrix \mathbf{R}^{-1}
- Chevallier 2007, Mukherjee et al. 2011

Invert B matrix

$$
\nabla J(\mathbf{x})=2 \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{\mathbf{b}}\right)+2 \mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{y}-H[\mathbf{x}])
$$

- B diagonal or sparse
- Inversion using PCA
- $\mathbf{B}=\mathbf{S}^{\top} \mathbf{C S}$ with \mathbf{S} vector of standard deviations, \mathbf{C} eigenvalue-decomposed $\mathbf{C}=\mathbf{V}^{\top} \mathbf{v} \mathbf{V}$
- C block-diagonal, or product of block-diagonal matrices
- $\mathbf{B}^{-1}=\mathbf{S} \mathbf{V v}^{-1} \mathbf{V}^{\top} \mathbf{S}^{\top}$

Conditioning

- Many optimization methods available
- More efficient with preconditioning
- State vector \neq physical vector
- $\mathbf{z}=\mathbf{A}^{-1 / 2}\left(\mathbf{x}-\mathbf{x}_{\mathrm{b}}\right)$ reduces the minimisation to one iteration with conjugate gradient methods
- $J_{\mathbf{z}}{ }^{\prime \prime} \sim \mathbf{I}$

- $\mathbf{z}=\mathbf{B}^{-1 / 2}\left(\mathbf{x}-\mathbf{x}_{\mathrm{b}}\right)$ is a simple approximation
- J unchanged
$\circ \operatorname{grad}_{\mathbf{z}}(J)=\mathbf{B}^{+1 / 2} \operatorname{grad}_{\mathbf{x}}(J)$

Outline

- Analytical formulation
- Variational formulation
- Monte Carlo formulation
- Diagnostics
- Prospects

Ensemble methods

- Principle: replace some of the pdf computations using finite-size ensembles
- Ex:

$$
\begin{aligned}
\mathbf{K} & =\mathbf{B H}^{\mathrm{T}}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \\
\mathbf{x}_{a} & =\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right) \\
\mathbf{A} & =\mathbf{B}-\mathbf{K H B}
\end{aligned}
$$

Ensemble methods

- Particle filters (Le Doucet et al. 2001)
- Ensemble Kalman filter (Evensen 1994)
- Ensemble forecast of error statistics
- Full-rank analytical analysis

- Ensemble square root filter (Whitaker and Hamill 2002)
- Ensemble forecast of error statistics
- Reduced rank analytical analysis
- ex: http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
- Maximum likelihood ensemble filter (Zupanski 2005)
- Ensemble forecast of error statistics
- Minimize cost function in ensemble subspace

Ensemble methods

- Less limitation wrt linearity or pdf model
- No adjoint model
- Parallel hardware

Figure 2. Run-times of $4 D$-Var for different node counts with $4 D$-Var broken down into its constituents.

Particle filter

- Apply Bayes' formula to a discrete ensemble of \mathbf{x} 's

Ex: 100 particles monovariate x, Gaussian pdfs, up to 25 observations

Particle filter

LSCE

Particle filter

- Curse of dimensionality
- Sampling high-dimensional spaces
- Exponential increase of ensemble size to maintain a given sampling accuracy
- Numerical issues

$$
\begin{aligned}
p(\mathbf{x} \mid \mathbf{y}) & =p(\mathbf{x}) \cdot \frac{p\left(\mathbf{y}_{1} \mid \mathbf{x}\right)}{p\left(\mathbf{y}_{1}\right)} \cdot \frac{p\left(\mathbf{y}_{2} \mid \mathbf{x}\right)}{p\left(\mathbf{y}_{2}\right)} \cdots \\
p(\mathbf{y}) & =\int p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Effective ensemble methods

- Fight against the curse of dimensionality
- Localization
- Restrict the radius of influence of the observations
- Add hard constraints to reduce the size of the state vector
- From flux estimation to model parameter estimation
- Split the problem into pieces
- Sequential
- Trick or treat?

Ensemble methods for diagnostics

- Ensembles of inversions with consistent statistics make it possible to reconstruct the posterior pdf

$$
\begin{aligned}
\mathbf{K} & =\mathbf{B H}^{\mathrm{T}}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \\
\mathbf{x}_{a} & =\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right) \\
\mathbf{A} & =\mathbf{B}-\mathbf{K H B}
\end{aligned}
$$

- Define truth \mathbf{x}_{t}
- Sample \mathbf{x}_{b} from $\mathrm{N}\left(\mathbf{x}_{\mathrm{t}}, \mathbf{B}\right)$
- Sample \mathbf{y} from $\mathrm{N}\left(\mathbf{H} \mathbf{x}_{\mathrm{t}}, \mathbf{R}\right)$
- The distribution of \mathbf{x}_{a} follows \mathbf{A}

Outline

o Analytical formulation
o Variational formulation
o Monte Carlo formulation

- Diagnostics
- Prospects

Evaluation

- Diagnosed error bars and error correlations
- $J\left(\mathbf{x}_{\mathrm{a}}\right)<J\left(\mathbf{x}_{\mathrm{b}}\right)$
- $J\left(\mathbf{x}_{\mathrm{a}}\right)$ follows a chi-square pdf centered on p with std. dev. $\sqrt{ } \mathrm{p}$
- p: number of observations
- The sum of two normal distributions is a normal distribution
- $H\left(\mathbf{x}_{b}\right)-\mathbf{y}$: zero bias, covariance $\mathbf{H B H}^{\top}+\mathbf{R}$
- Real world vs. theory

Evaluation (cont')

- Use independent (new) observations \mathbf{y}_{n} unbiased with covariance \mathbf{R}_{n}
- $H\left(\mathbf{x}_{\mathrm{a}}\right)-\mathbf{y}_{\mathrm{n}}$, unbiased, covariance $\mathbf{H A} \mathbf{H}^{\top}+\mathbf{R}_{\mathrm{n}}$
- $H\left(\mathbf{x}_{\mathrm{a}}\right)-\mathbf{y}_{\mathrm{n}}$ uncorrelated with $H\left(\mathbf{x}_{\mathrm{b}}\right)-\mathbf{y}$ and unbiased

Outline

- Analytical formulation
- Variational formulation
- Monte Carlo formulation
- Diagnostics
- Prospects

Inversion methods

- Analytical formulation
- Matrix size limiting
- Ensemble methods

$$
p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{x}) \cdot p(\mathbf{y} \mid \mathbf{x})
$$

- Ensemble size limiting
- Variational method
- Iteration number limiting
- Hybrid approaches

LSCE inversion system (PYVAR)

$p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{x}) \cdot p(\mathbf{y} \mid \mathbf{x})$

- Variational approach for high-resolution information
- Weekly fluxes at $3.75 \times 2.5 \mathrm{deg}^{2}$ global
- or hourly fluxes at $\sim 10-100 \mathrm{~km}^{2}$ regional
- Ensemble approach for coarse resolution information
- Mean variance of the flux errors over long periods of time

Towards an operational processing by dedicated centres

- European Global Monitoring for Environment and Security
- Suite of projects GEMS, MACC and MACC-

II

- NRT needs
- traceability

Assimilation of IMECC data within MACC (R. Engelen)
MACC service infrastructure

In ten years

- Dense regional networks and sparse international networks combined with satellite instruments
- High spatial resolution (<50km), even at global scale, very high resolution for specific areas, like cities or plants
- Inform policy at regional, national and international levels
- Dense network needed (mesh < 100km)
- First space-borne lidar CO_{2} measurements and CO_{2} imagery
- Coupling with other carbon related observations within models of the carbon cycle
- Comprehensive carbon information systems

Some references on-line

- F. Bouttier and P. Courtier: Data assimilation concepts and methods
- www.ecmwf.int/newsevents/training/lecture notes/pdf files/ ASSIM/Ass cons.pdf
- D. Jacob: Lectures on inverse modeling
- acmg.seas.harvard.edu/education/jacob lectures inverse mo deling.pdf
- E.T. Jaynes: Probability theory: the logic of Science
- omega.albany.edu:8008/JaynesBook.html
- A. Tarantola: Inverse problem theory
- www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/inde x.html
- Application to CO_{2} flux inversion
- www.esrl.noaa.gov/gmd/ccgg/carbontracker/
- www.carboscope.eu

