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Objective 

 Overview of data assimilation methods for large 

state vectors, from the point of view of CO2 flux 

inversion 

 

 Outline 

 Analytical formulation 

 Variational formulation 

 Monte Carlo formulation 

 Diagnostics 

 Prospects 
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The linear problem with Gaussian error 

statistics and zero biases 

x: state vector 
xb: expected value of the prior pdf of x 
y: observation vector  
H: linear observation operator 
B: Prior error covariance matrix 
R: observation error covariance matrix 

positive definite 

xb, B 
Hxb, HBHT 

y, R H 



Analytical solution 

 Expected value of the posterior PDF 

 

 

 Covariance of the posterior PDF 

 

 

 Gain matrix 

xb, B 
Hxb, HBHT 

y, R 

Hxa, HAHT 
xa, A

 

H 



Example 

 xb = 15.0, σb = 1.0 

 y = 15.5, σy = 0.5 

 h = 1 

 

 k = 1.02/(0.52+1.02) = 0.8 

 xa = 15.0 + 0.8 (15.5 – 15.0) = 15.4 

 σa = √(1.02(1-k)) ≈ 0.45 



Assigning errors 

 Variances, correlations 

 B:  

 Prior errors 

 R: 

 Measurement errors 

 Representation errors 

 Errors of the observation operator H 



Implementation 

 Inversion system: 

 

 

 

 

 B, R, xb, y and H given 

 Issues: 

 Compute H 

 from H 

 Exact derivatives 

 Finite differences 

 Matrix inversion 

 In practice, restricted to ranks < 105 

 



Non-linear observation operator 

 In the tangent-linear hypothesis, the non-linear operators 
are linearized in the vicinity of some state of x 

 H[x] ~ H[xb] + H(x-xb) 

 

 Loss of optimality 

 Statistics less Gaussian 

 The degree of linearity is relative to x-xb 

 



Non-linear observation operator 

 In the tangent-linear hypothesis, the non-linear operators 
are linearized in the vicinity of some state of x 

 H[x] ~ H[xb] + H(x-xb) 

 

 Possible inner loop/ outer loop system 

 H[x] ~ H[xa
i] + Hi (x-xa

i) 

 Repeat the inversion keeping xb constant and updating 
Hi 
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Outline 

 Analytical formulation 

 Variational formulation 

 Monte Carlo formulation 

 Diagnostics 

 Prospects 



Variational solution 

 The linear problem with Gaussian error statistics and 
zero biases 

 

 

 Xa minimises 

 

 

 

 Covariance of the posterior  

PDF:  



Implementation 

 Inversion system: 

 

 

 

 

 
 B, R, xb, y and H given 

 Issues: 

 Compute H and HT 

 Invert B and R 

 Minimisation method (grad(J(xa)) ~ 0) 

 Compute and invert J’’ 



Compute H and HT 

 
 H: Tangent-linear operator (Jacobian matrix) H 

 HT: Adjoint matrix of H 

 Chain rule: 

 Hx = Hn Hn-1 … H2 H1x 

 HTy* = H!
T H2

T … Hn-1
T Hn

Ty* 

 First order Taylor development of each individual line 
of code 

1 1( ) 2 ( ) 2 ( [ ])TJ H   
b

x B x- x H R y - x



Adjoint technique 

 Example: 

 Compute the adjoint instruction of the line: 

 a = b2  

 Forward statement 

 a = b2 

 Tangent-linear statement y = Hx  

 δb = 0.δa + 1.δb 

 δa = 0.δa + 2b.δb 

 Adjoint statement x* = HTy* 

 b* = 2ba*+ 1.b*  

 a* = 0.a*+ 0.b*  

 



Adjoint technique 

 Example: 

 Compute the adjoint instruction of the line: 

 a = a2  

 Forward statement 

 a = a2 

 Tangent-linear statement y = Hx  

 δa = 2a.δa 

 Adjoint statement x* = HTy* 

 a* = 2a.a* 



Handling the linearization points 

 Handling of trajectory 
 The derivatives in H are a function of x 

 Hx = Hn Hn-1 … H2 H1x (forward) 

 HTy* = H!
T H2

T … Hn-1
T Hn

Ty* (backward) 

 Linearization points for the adjoint 

 Stored in computer memory 

 Stored on disk 

 Recomputed on the fly 

 Some mixture of the above 

 



Which code? 

 Adjoint of full code or of simplified version? 

 Time handling 

 Ht(x) ~ H(x)  

 Spatial resolution 

 HHR(x) ~ HLR(x) 

 Sophistication of physics 



Adjoint coding 

 Manual coding 

 Automatic differentiation 
 41 softwares currently listed on http://www.autodiff.org 

 Source code transformation 

 From the original code 

 From a recoded version  

 Operator overloading 

 Freeware or not 

 Correctness of the TL 
 Linearity  

 Convergence of the Taylor development towards the NL code 

 Correctness of the AD… 

 Linearity 

 (Hx)THx = xTHT(Hx) 

 … to the machine epsilon (relative error due to rounding 
in floating point arithmetic) 

 

http://www.autodiff.org/


Invert R matrix 

 

 Try to have R diagonal 

 Ignore correlations 

 Observation thinning 

 Increase variances and set correlations to zero 

 Block-diagonal R 

 Directly define the precision matrix R-1 

 Chevallier 2007, Mukherjee et al. 2011 

 

1 1( ) 2 ( ) 2 ( [ ])TJ H   
b

x B x- x H R y - x



Invert B matrix 

 

 B diagonal or sparse  

 Inversion using PCA 

 B = STCS with S vector of standard deviations, C 
eigenvalue-decomposed C = VTvV 

 C block-diagonal, or product of block-diagonal 
matrices 

 B-1 = S Vv-1VT ST 

 

1 1( ) 2 ( ) 2 ( [ ])TJ H   
b

x B x- x H R y - x



Conditioning 

 Many optimization methods available 

 More efficient with preconditioning  
 State vector ≠ physical vector 

 z = A-1/2(x-xb) reduces the minimisation to one 
iteration with conjugate gradient methods 

 Jz’’~I 

 

 

 

 z = B-1/2(x-xb) is a simple approximation 

 J unchanged 

 gradz(J) = B+1/2 gradx(J)  



Outline 

 Analytical formulation 

 Variational formulation 

 Monte Carlo formulation 

 Diagnostics 

 Prospects 



Ensemble methods 

 Principle: replace some of the pdf computations using  
finite-size ensembles 

 

 Ex: 

 

xb, B Hxb, HBHT 

H 



Ensemble methods 

 

 Particle filters (Le Doucet et al. 2001) 

 Ensemble Kalman filter (Evensen 1994) 

 Ensemble forecast of error statistics 

 Full-rank analytical analysis 

 Ensemble square root filter (Whitaker and Hamill 2002) 

 Ensemble forecast of error statistics 

 Reduced rank analytical analysis 

 ex: http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ 

 Maximum likelihood ensemble filter (Zupanski 2005) 

 Ensemble forecast of error statistics 

 Minimize cost function in ensemble subspace 

 … 

 

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/


Ensemble methods 

 Less limitation wrt linearity or pdf model 

 No adjoint model 

 Parallel hardware 

Hamrud, ECMWF TM 616, 2010 



Particle filter  

 Apply Bayes’ formula to a discrete ensemble of x’s 

 

 

Number of observations 

Ex: 100 particles 
monovariate x, 
Gaussian pdfs, 
up to 25 observations 



Particle filter 

100 particles 

10 particles 

5 particles 



Particle filter 

 Curse of dimensionality 

 Sampling high-dimensional spaces 

 Exponential increase of ensemble size to 
maintain a given sampling accuracy 

 Numerical issues 

 

 

 

 

 

 

 

 



Effective ensemble methods 

 Fight against the curse of dimensionality 

 Localization 

 Restrict the radius of influence of the observations 

 Add hard constraints to reduce the size of the state 
vector 

 From flux estimation to model parameter estimation 

 Split the problem into pieces 

 Sequential 

 

 Trick or treat? 



Ensemble methods for diagnostics 

 Ensembles of inversions with consistent statistics 
make it possible to reconstruct the posterior pdf 

 

 

 

 

 

 

 Define truth xt 

 Sample xb from N(xt, B) 

 Sample y from N(Hxt, R) 

 

 The distribution of xa follows A 



Outline 

 Analytical formulation 
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Evaluation 

 Diagnosed error bars and error correlations 

 

 J(xa) < J(xb)  

 

 J(xa) follows a chi-square pdf centered on p with 
std. dev. √p  
 p: number of observations 

 

 The sum of two normal distributions is a normal 
distribution 
 H(xb) – y : zero bias, covariance HBHT+R 

 

 Real world vs. theory 



Evaluation (cont’) 

 Use independent (new) observations yn unbiased 
with covariance Rn 
 H(xa) – yn , unbiased, covariance HAHT+Rn  

 H(xa) – yn  uncorrelated with H(xb) – y and unbiased 

 

https://tccon-wiki.caltech.edu/@api/deki/files/792/=TCCON_logo_final_orange.png?size=webview


Outline 

 Analytical formulation 

 Variational formulation 

 Monte Carlo formulation 

 Diagnostics 

 Prospects 
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Inversion methods 

 Analytical formulation 

 Matrix size limiting 

 Ensemble methods 

 Ensemble size limiting 

 Variational method 

 Iteration number limiting 

 

 Hybrid approaches 

 



LSCE inversion system (PYVAR) 

 Variational approach for high-resolution information 
 Weekly fluxes at 3.75x2.5 deg2 global 
 or hourly fluxes at ~ 10 – 100 km2 regional 
 

 Ensemble approach for coarse resolution information 
 Mean variance of the flux errors over long 

periods of time  
 

 
 



Towards an operational processing 

by dedicated centres 

 European Global Monitoring for 
Environment and Security 

 Suite of projects GEMS, MACC and MACC-
II 

 NRT needs 

 traceability 

MACC service infrastructure 

Assimilation of 
IMECC data within 
MACC (R. Engelen) 



In ten years 

 Dense regional networks and sparse international networks 
combined with satellite instruments 

 

 High spatial resolution (<50km), even at global scale, very high 
resolution for specific areas, like cities or plants 

 

 Inform policy at regional, national and international levels 

 Dense network needed (mesh < 100km) 

 

 First space-borne lidar CO2 measurements and CO2 imagery 

 

 Coupling with other carbon related observations within models of 
the carbon cycle 

 Comprehensive carbon information systems 



Some references on-line 

 F. Bouttier and P. Courtier:  Data assimilation concepts 
and methods 

 www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/
ASSIM/Ass_cons.pdf  

 D. Jacob: Lectures on inverse modeling 

 acmg.seas.harvard.edu/education/jacob_lectures_inverse_mo
deling.pdf  

 E.T. Jaynes: Probability theory: the logic of Science 

 omega.albany.edu:8008/JaynesBook.html 

 A. Tarantola: Inverse problem theory 

 www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/inde
x.html 

 

 Application to CO2 flux inversion 

 www.esrl.noaa.gov/gmd/ccgg/carbontracker/ 

 www.carboscope.eu  
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http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
http://www.carboscope.eu/

