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Abstract

The ecological literature reveals considerable confusion about the meaning of validation in the context of simulation
models. The confusion arises as much from semantic and philosophical considerations as from the selection of validation
procedures. Validation is not a procedure for testing scientific theory or for certifying the ‘truth® of current scientific
understanding, nor is it a required activity of every modelling project. Validation means that a model 1s acceptable for its
intended use because it meets specified performance requirements.

Before validation is undertaken, (1) the purpose of the model, (2) the performance criteria, and (3) the model context
must be specified. The validation process can be decomposed into several components: (1) operation, (2) theory, and (3)
data. Important concepts neleded to understand the model evaluation process are verification, calibration, validation,
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Verification, Validation, and Confirmation of
Numerical Models in the Earth Sciences

Naomi Oreskes,* Kristin Shrader-Frechette, Kenneth Belitz

Verification and validation of numerical models of natural systems is impossible. This is
because natural systems are never closed and because model results are always non-
unique. Models can be confirmed by the demonstration of agreement between observation
and prediction, but confirmation is inherently partial. Complete confirmation is logically
precluded by the fallacy of affirming the consequent and by incomplete access to natural
phenomena. Models can only be evaluated in relative terms, and their predictive value is
always open to question. The primary value of models is heuristic.

puter program may be verifiable
Mathematical components are sub
verification because they are part of
systems that include claims that are
true as a function of the meanings a
to the specific symbols used to expre;
(13). However, the models that us
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Benchmarking coupled climate-carbon models against long-term
atmospheric CO, measurements
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[1] We evaluated three global models of the coupled carbon-climate system against
atmospheric CO, concentration measured at a network of stations. These three models,
HadCM3LC, IPSL-CM2-C, and IPSL-CM4-LOOP, participated in the C*MIP experiment
and in various other s1mulat1nns of the future ::111'natr.=: impacts on the land and ocean



_Conceptions

\re we building modelright?

a demonstration that a-modeling
ect: Verification errors: mechanical and

e we building right model?

n is a demonstration that a model within its
olicability possesses a satisfactory range of
tent with the intended application of the

: How confirm the model is?

sufficient degree of belief in the validity
tify its use for research and decision

Rykiel 1996
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J'he benefits and limits of validating
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Before a validation is undertaken for
should asked these questions:

e (1) What is the purpose of the model?
e (2) What is the performance criteria?
e (3) What is the model context?

e Il The statement that a model has been valid
misleading without stating the purpose of the
model, the validation criteria used and the co
to which the claim applies.



of-validating

Benefits:

Models can be confirmed by the demon
agreement between observation and predic
e Limits:

The confirmation is inherently partial, so the

can only be evaluated in relative terms and their
predictive value is always open to question.




om.the validatre

Not all models need validation.

e The primary value of models is heuristiGyl
representations, useful for guiding furthe
not susceptible to proof.

e Models are most useful when they are used
challenge existing formulations, rather than t
validate or verify them.

odels are ™
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Fig. 3. Validation of stand characteristics: PPy simulation. Each blue dot corresponds the state of one permanent plot at its |ast measurement. The dotted blue line represents
their linear regression. AB and EF are average relative bias and model efficiency, respectively. An **” indicates that the systematic error is higher than the unsystematic error
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[RMSEs = RMSER ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 6. Validation of stand characteristics: ¥T; simulation. Each blue dot corresponds the state of one permanent plot at its [ast measurement. The dotted blue line represents
their linear regression. AR and EF are the average relative bias and model efficiency. respectively. An **" indicates that the systematic error is higher than the unsystematic
error [ RMSEs > RMSEu). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Figure 5. Time evolution of the interhemispheric gradient
of atmospheric CO-, defined here as the difference between
the deseasonalized annual CO, concentration at MLO and
SPO.
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Figure 6. Simulated and observed climatologic averaged CO, seasonal cycle at BRW, MLO, and SPO.
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