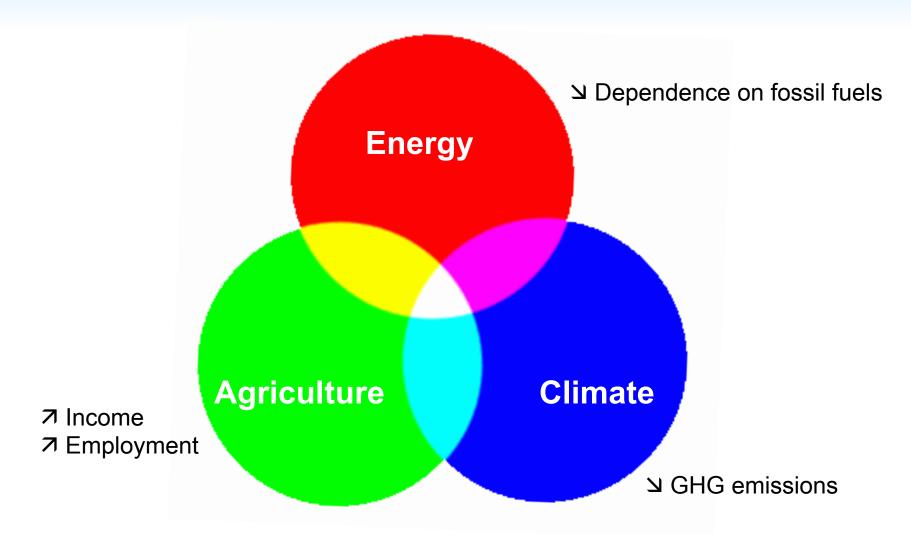
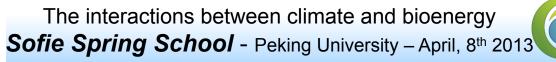
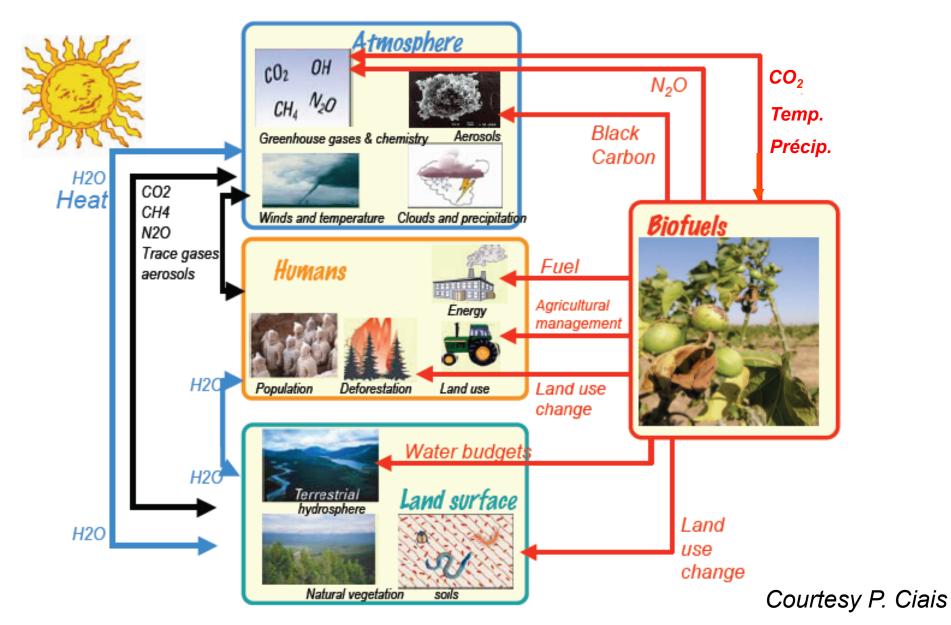
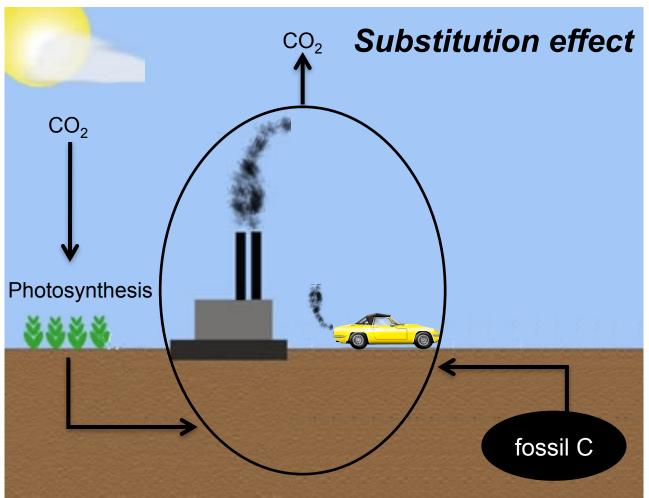
Interactions between Climate & Bioenergy

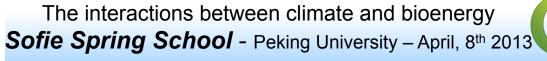

Nicolas Vuichard – LSCE vuichard@lsce.ipsl.fr


What means 'Biornergy'?


- Energy from biomass
- Biomass: organic matter resulting of the photosynthetic process
 - Crops
 - Wood
 - Residues (straw, sawdust,...)
 - Organic wastes (urban wastes, déchets urbains, sludge, manure, ...)

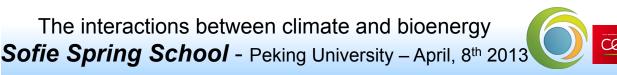
Reasons for enthusiasm





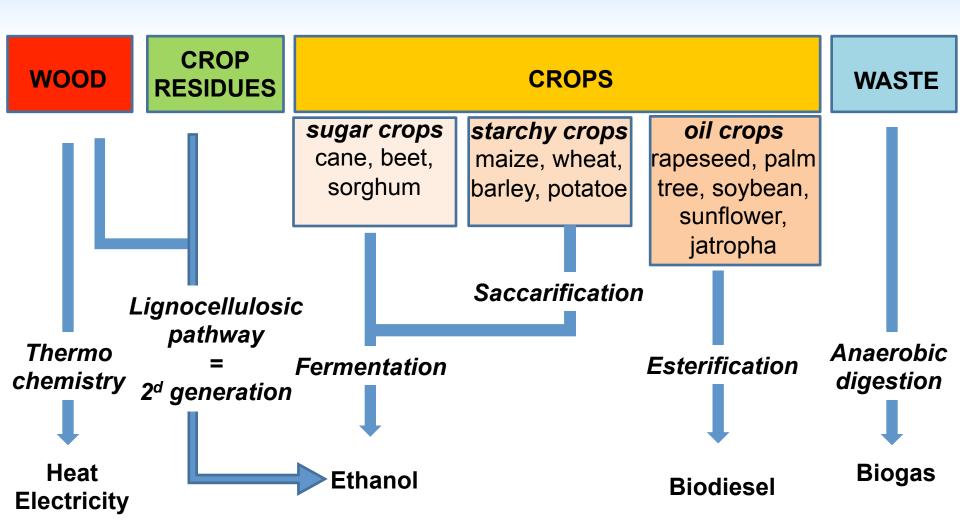
Principle of 'Bioenergy'

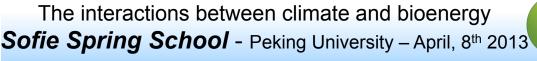
Plan of the presentation


Overview of the current production

Quantifying the environmental benefit of biofuel pathways

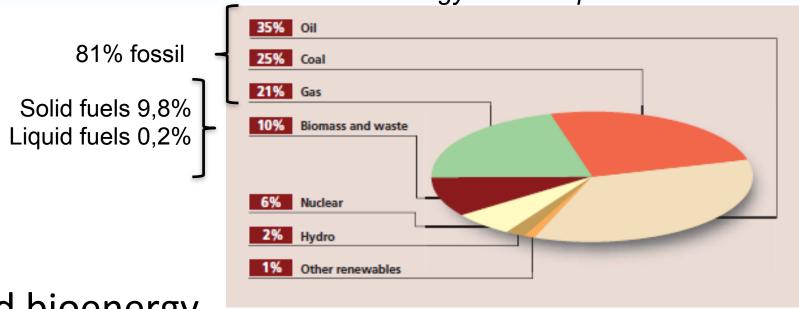
 Uncertainties and risks associated to the development of biofuel pathways


Overview of some alternatives

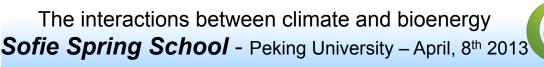


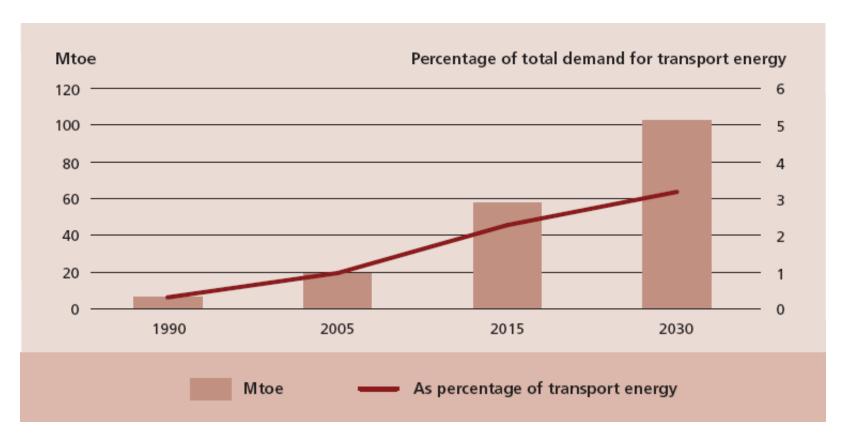
Overview of the current production and potential for near future

The different pathways

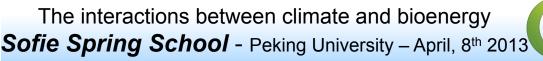


Bioenergy today


Global energy demand per source in 2005


Solid bioenergy

- Source: IEA, 2007 from FAO, 2008
- Majority but with only a potential substituting effect
- Liquid bioenergy (biofuels)
 - Minority but with a realized substituting effect



Production evolution

IEA, 2007 from FAO, 2008

Biofuel production per country

COUNTRY/COUNTRY GROUPING	ETHANOL		BIODIESEL		TOTAL	
	(Million litres)	(Mtoe)	(Million litres)	(Mtoe)	(Million litres)	(Mtoe)
Brazil	19 000	10.44	227	0.17	19 227	10.60
Canada	1 000	0.55	97	0.07	1 097	0.62
China	1 840	1.01	114	0.08	1 954	1.09
India	400	0.22	45	0.03	445	0.25
Indonesia	0	0.00	409	0.30	409	0.30
Malaysia	0	0.00	330	0.24	330	0.24
United States of America	26 500	14.55	1 688	1.25	28 188	15.80
European Union	2 253	1.24	6 109	4.52	8 361	5.76
Others	1 017	0.56	1 186	0.88	2 203	1.44
World	52 009	28.57	10 204	7.56	62 213	36.12

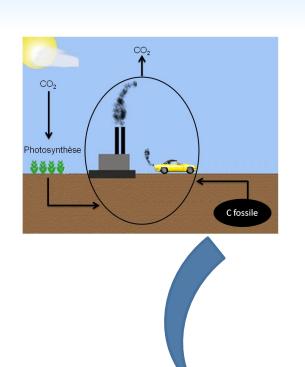
FAO, 2008

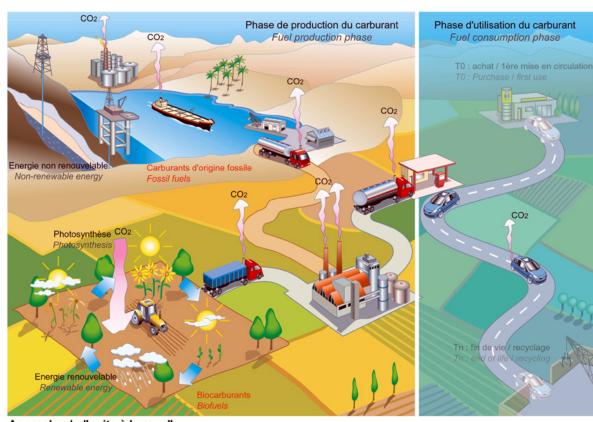
Yields

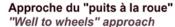
CROP	GLOBAL/NATIONAL ESTIMATES	BIOFUEL	CROP YIELD	CONVERSION EFFICIENCY	BIOFUEL YIELD
			(Tonnes/ha)	(Litres/tonne)	(Litres/ha)
Sugar cane	Brazil	Ethanol	73.5	74.5	5 476
Sugar cane	India	Ethanol	60.7	74.5	4 522
Oil palm	Malaysia	Biodiesel	20.6	230	4 736
Oil palm	Indonesia	Biodiesel	17.8	230	4 092
Maize	United States of America	Ethanol	9.4	399	3 751
Maize	China	Ethanol	5.0	399	1 995
Cassava	Brazil	Ethanol	13.6	137	1 863
Cassava	Nigeria	Ethanol	10.8	137	1 480
Soybean	United States of America	Biodiesel	2.7	205	552
Soybean	Brazil	Biodiesel	2.4	205	491

Sources: Rajagopal et al., 2007, for global data; Naylor et al., 2007, for national data.

The interactions between climate and bioenergy Sofie Spring School - Peking University - April, 8th 2013

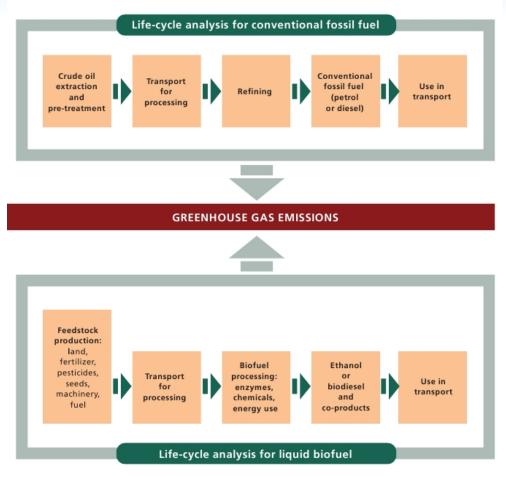


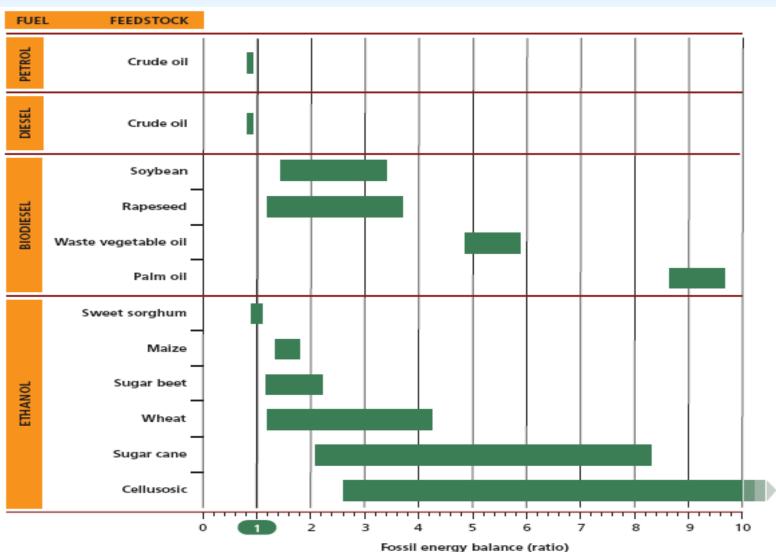




Quantifying the environmental benefit of biofuel pathways

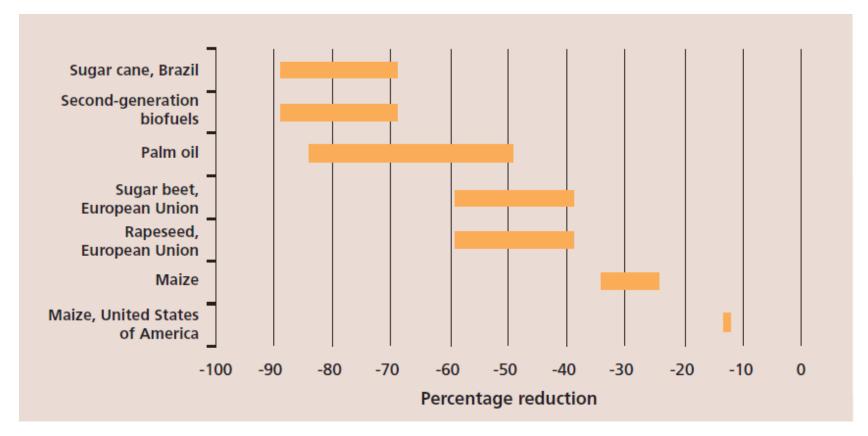
Towards a more realistic approach



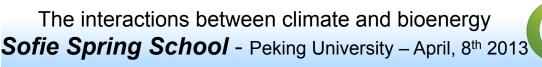

Life cycle analysis

FAO, 2008

Evaluating the energy efficiency

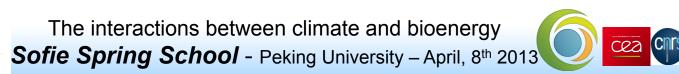


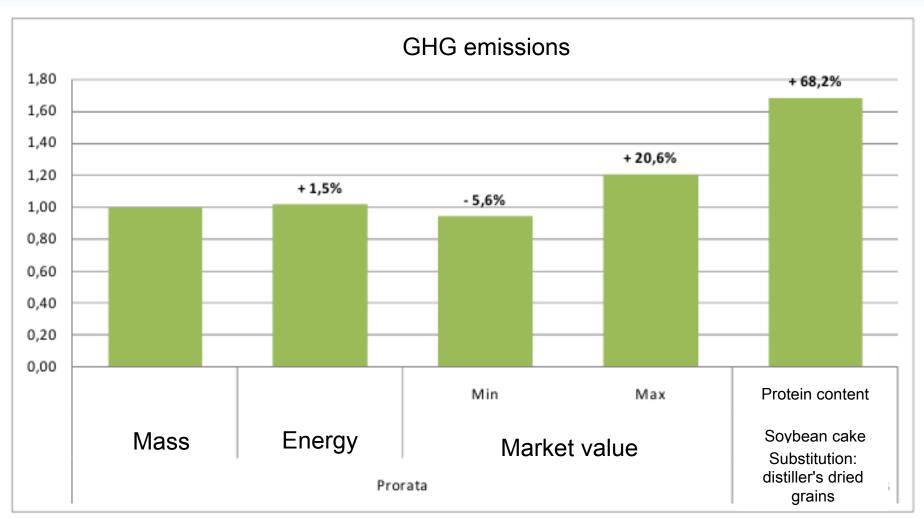
The interactions between climate and bioenergy Sofie Spring School - Peking University - April, 8th 2013



GHG mitigation of different pathwaysfilières

Source: IEA, 2007 from FAO, 2008



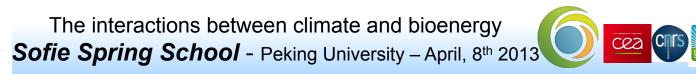

Why so much uncertainty?

- Partial accounting of equipment
- Non-standardized emission factors
- Accounting for Co-products
 - By allocation
 - Mass basis
 - Energy basis
 - Market value basis
 - By system extension (substitution)

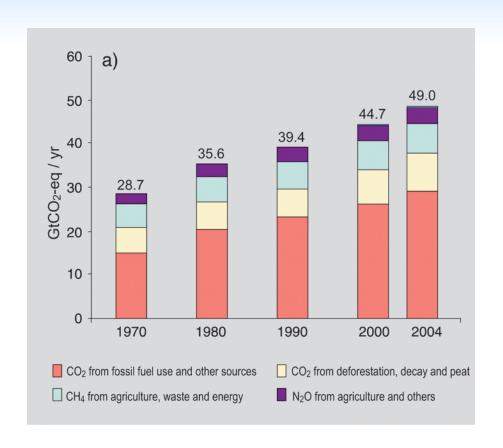
Treatment of the co-products

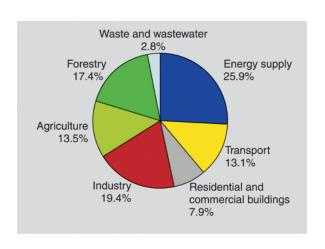
Relative GHG emissions for ethanol from wheat in France

Source: Référentiel pour les ACV des biocarburants de première génération en France, BiolS/ADEME, 2008.

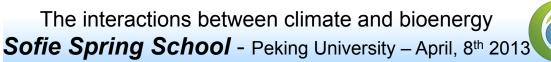

The interactions between climate and bioenergy

Sofie Spring School - Peking University - April, 8th 2013




Present-day Substituting effect at global scale

- Biofuel production estimated at ~ 1.5 EJ per year (over 14 Mha)
- With a 'gasoline' reference at 86 gCO₂/MJ and 90% reduction
- The emission of 0.12 GtCO₂ per year is avoided by substitution effect

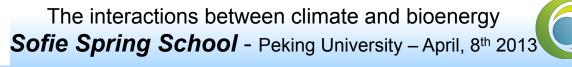

Global GHG Emissions

- 0.2% of the global GHG emissions
- 1.8% of the emissions of the Transport sector

The potential for up-scaling

400 EJ en 2050 ⇔ 1500 Mha (IEA Bioenergy, 2008)

Region	Population in 2050	Total land with crop production potential	Cultivated Land in 1990	Additional cultivated land required in 2050	Available area for biomass production in 2050	Max. Additional amount of energy from biomass ^a
	Billion	Gha	Gha	Gha	Gha	EJ/yr
Developed ^b	-	0.820	0.670	0.050	0.100	30
Latin America						
Central & Caribbean	0.286	0.087	0.037	0.015	0.035	11
South America	0.524	0.865	0.153	0.082	0.630	189
Africa						
Eastern	0.698	0.251	0.063	0.068	0.120	36
Middle	0.284	0.383	0.043	0.052	0.288	86
Northern	0.317	0.104	0.04	0.014	0.050	15
Southern	0.106	0.044	0.016	0.012	0.016	5
Western	0.639	0.196	0.090	0.096	0.010	3
China ^c	-			-	-	2
Rest of Asia						
Western	0.387	0.042	0.037	0.010	-0.005	0
South -Central	2.521	0.200	0.205	0.021	-0.026	0
Eastern	1.722	0.175	0.131	0.008	0.036	11
South -East	0.812	0.148	0.082	0.038	0.028	8
Total for regions above	8.296	2.495	0.897	0.416	1.28	396


Total biomass energy potential, EJ/yr

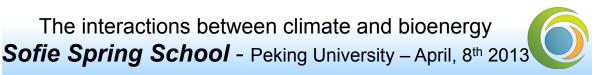
441^d

Uncertainties and risks associated to the development of biofuel pathways

Reducing the uncertainty of LCA

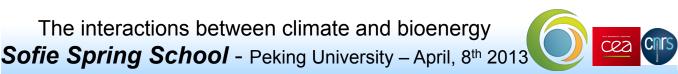
Treatment of the co-products

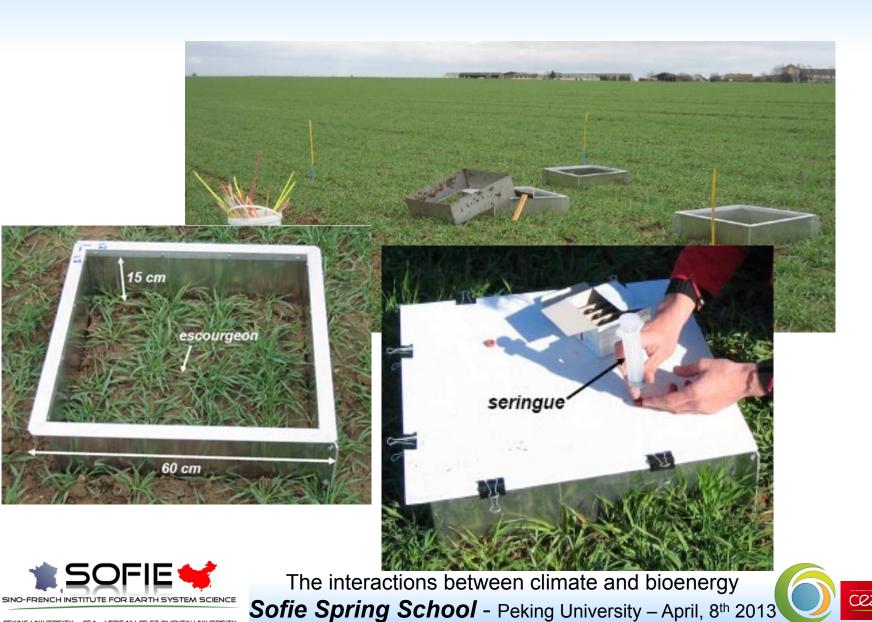
N₂O emissions


Accounting for Land-Use change (LUC) impact

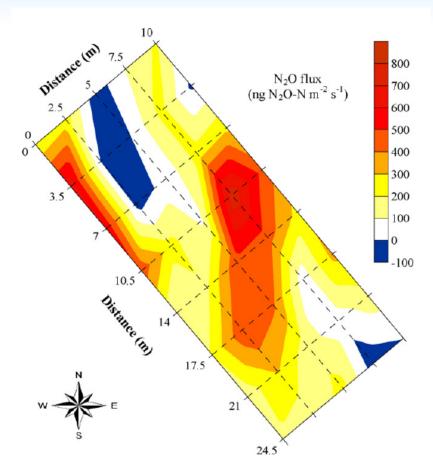
N₂O emissions by soils

- GHG ~300 times warmer than CO₂
- Nitrification
 - Oxydation from ammonium (NH_4^+) to nitrite (NO_2^-) and nitrate (NO_3^-). N_2O = by product
- Denitrification
 - Microbial process processus microbien transforming des soluble nitrogen oxydes (NO₃-, NO₂-) into gaseous compounds (NO, N₂O, N₂)
- Intensity is function of
 - Soil type
 - Humidity / Temperature




Measurement methods

- Static chambers
 - With the measurements of the concentration by mean of different methods:
 - Gas chromotography
 - Tunable Diode Laser (TDL)
- Flux tower
 - By mean of TDL technique



N₂O Measurement methods

High spatial and temporal variability

N₂O emissions (en ng m-2 s-1, FAL, Zürich) at Oensingen site (Switzerland)

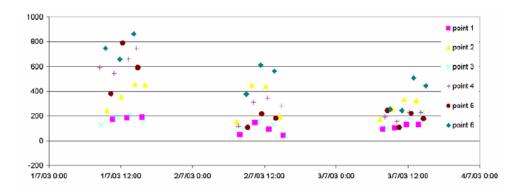
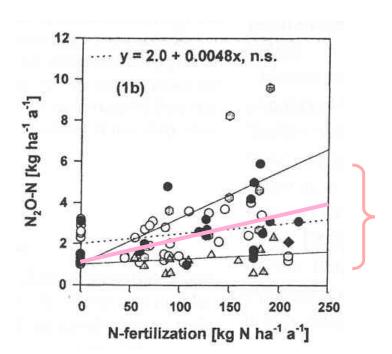


Fig. 2. Spatial variability of N_2O fluxes measured with the Fast-Box technique at NI-LE. The contour plot is based on flux measurements at 40 points on the 25 m \times 10 m grid, each sampling point being at the corner of a 2.5 m \times 3.5 m rectangle. Flechard et al., 2007

Sofie Spring School - Peking University – April, 8th 2013



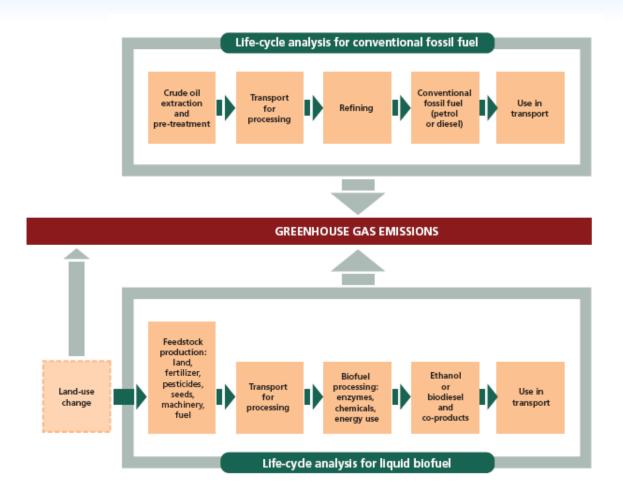
- Crutzen et al, N2O: Release from agrobiofuel production negates global warming reduction by replacing fossil fuels, ACP, 2008.
 - Q1: How are the N2O emissions by soil estimated in the IPCC methodology?
 - Q2: Which approach is used in this paper leading the authors to revisit the IPCC estimates?

Emission factor

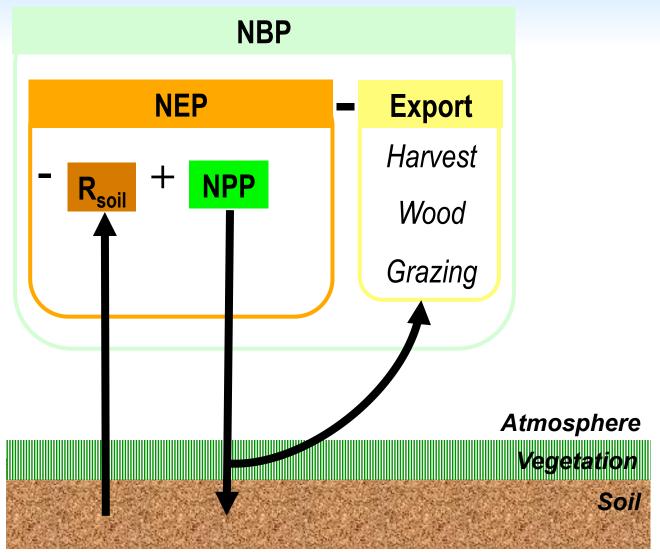
 Review of N₂O emission data (≠ crops, regions, years) vs N-input

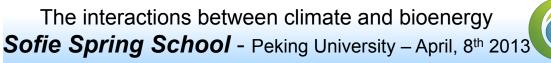
Envelope of the 'IPCC (1996)' relationship ~1% of the mineral N inputs

Kaiser et al., 2000


A 'top-down' approach

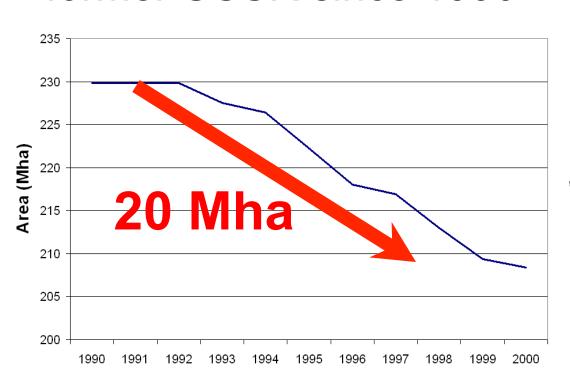
- Crutzen et al. (2007) paper
- Calculation based on the today and preindustrial N₂O atm. sources and sinks
 - => Present-day emissions : ~6 TgN₂O-N yr⁻¹
- Deduction of Industrial Emissions
 - => Agricultural emissions : ~5 TgN₂O-N yr⁻¹
 - ~5% of the global mineral fertilisation

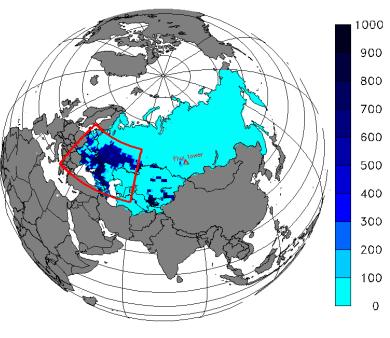

Accounting for LUC



- Fargione et al., Land Clearing and the Biofuel
 Carbon Debt, Science, 2008
 - Q1: What is the process highlighted in this paper that increases the CO2 emissions of biofuel production?
 - Q2: What is the definition of the 'carbon debt'?
 - □Q3: Based on this study, on which type of lands, the carbon debt of biofuel produciton is the higest? the lowest?

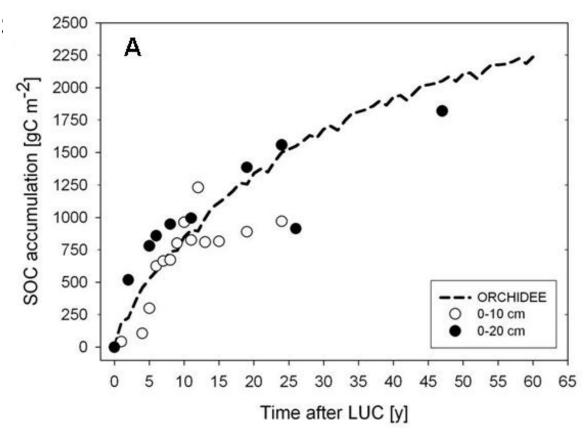
The associated process



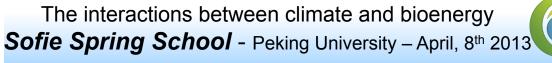


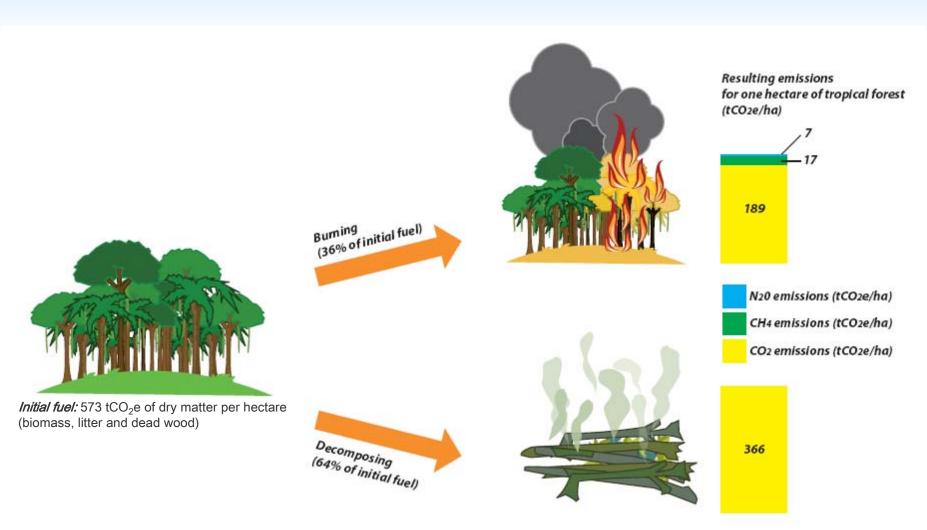
An example

 Massive abandonment of cultivated lands in former USSR since 1990


Hurtt *et al.*, Global Change Biology, 2006

An example


Carbon stock in abandoned agricultural soils



From Belelli (pers. comm.)

Deforestation process

The interactions between climate and bioenergy Sofie Spring School - Peking University - April, 8th 2013

Bellassen, 2008

The concept of "carbon debt"

Science, 2008

- LUC may induce a carbon loss
- Some Bioenergy crops will need several years for compensating this C loss

Land Clearing and the Biofuel Carbon Debt

Joseph Fargione, 1 Jason Hill, 2,3 David Tilman, 2* Stephen Polasky, 2,3 Peter Hawthorne

Conversion of native ecosystems Belowground blomass to biofuel production and soil carbon loss Aboveground blomass carbon loss 1000 Carbon debt (Mg co₂ har¹) Conversion of degraded cropland 750 to biofuel production 500 Debt allocated to blottel (%) 100 Arnual repayment (Mg co₂e ha⁻¹ yr⁻¹) 1.2 Time to repay blotual carbon debt (yr) 100 10 Soybean Sugarcane oybean Corn Com Prairie blodiese biodiese Biofuel biodiesel Tropical Tropical Former Peatland Cerrado ecosystem rainfores rainforest rainforest wooded Location Indonesia Brazil Brazil US Indonesia. Malavsia Malaysia


The interactions between climate and bioenergy **Sofie Spring School** - Peking University – April, 8th 2013

- Lapola et al., Indirect land-use changes can overcome carbon savings from biofuels in Brazil, PNAS, 2010
 - ■Q1: What are the two types of Land-use changes that are considered in this sutdy? Could you provide a definition for both terms?
 - □Q2: What are the different models used in this study and what do they simulate?

Up-scaling: from local to globe

- Impact of Indirect Land Use Change (iLUC)
 - US Corn-base ethanol production

20% GHG reduction

100% GHG increase

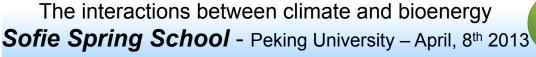
Biofuels and Indirect Land-Use Change

A Representative Depiction of How Biofuels Can Contribute Indirectly to Global Warming

Story of a scientific controversy

 April 2009 – Implementation of a regulation process on Oil in California state (Low Carbon Fuel Standard, LCFS)

- Precedeed of a public consultation process
 - Controversy about iLUC impacts



California carbon intensity values for gasoline, diesel and fuels that substitute them^{[22][41][47]} (grams of CO₂ equivalent released per MJ of energy produced)

Fuel type	Carbon intensity	Carbon intensity + land-use changes	Intensity change respect to 2011 LCFS
Midwest corn ethanol	75.10	105.10	+10%
California gasoline	95.86	95.86	+0.2%
CARB LCFS 2011 for gasoline ^[41]	-	95.61	-
California diesel (ULSD)	94.71	94.71	+0.2%
CARB LCFS 2011 for diesel ^[41]	-	94.47	-
California ethanol	50.70	80.70	-16%
Brazilian sugarcane ethanol	27.40	73.40	-23%
Biodiesel (B100) Midwest soybeans ⁽¹⁾	26.93	68.93	-27%
Renewable diesel Midwest soybeans ⁽¹⁾	28.80	68.93	-27%
Cellulosic ethanol (farmed trees) ⁽¹⁾	2.40	20.40	-79%
Compressed natural gas (bio-methane)	11.26	11.26	-88%

Mary D. Nichols, Chairman California Air Resources Board 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812

June 24, 2008

Dear Chairwoman Nichols,

We are writing regarding the California Air Resources Board's (ARB) ongoing development of the Low Carbon Fuel Standard (LCFS). As you are well aware, the Governor issued Executive Order S-1-07 on January 18, 2007, which calls for a reduction of at least 10 percent in the carbon intensity of California's transportation foels by 2020.

As researchers and scientists in the field of biomass to biofuel conversion, we are convinced that there simply is not enough hard empirical data to base any sound policy regulation in regards to the indirect impacts of renewable biofuels production. The field is relatively new, especially when compared to the vast knowledgebase present in fossil fuel production, and the limited analyses are driven by assumptions that sometimes lack robust empirical validation.

As an example of the confusion that this lack of reliable data produces, there has been significant attention to a recent article by Searchinger and

As researchers and scientists in the field of biomass to biofuel conversion, we are convinced that there simply is not enough hard empirical data to base any sound policy regulation in regards to the indirect impacts of renewable biofuels production. The field is relatively new, especially when compared to the vast knowledgebase present in fossil fuel production, and the limited analyses are driven by assumptions that sometimes lack robust empirical validation.

Searchinger, 2008). Searchinger also ignored the fact that the protein in corn still goes on for use as cattle feed as it cannot be converted to ethanol, with the result that there is no reduction in protein available for feeding animals, the major (about 60%) market for corn.

The traditional tools used by researchers, including Searchinger et al., to determine the direct and indirect impacts of renewable biofuel production are life cycle analysis (LCA) coupled with land-use change (LUC) projections. The results produced by the majority of the LCA models are highly sensitive to LUC assumptions, as well as baseline projections and test cases that have very limited scope. These sensitivities highlight how common LCA models can be applied to the same problem but produce significantly different, and often contradictory, results. There remain great uncertainties and challenges in combining LUC and LCA models that make their use highly problematic, particularly if the outputs of these models are used as a basis for policy decisions, or for comparing indirect impacts between fuel types. Some of the problems include the lack of large-scale, reliable data sets from field and process trials of growing, harvesting, and converting dedicated energy crops into biofels. These data are needed as "training sats" for the LCA models.

The interactions between climate and bioenergy **Sofie Spring School** - Peking University – April, 8th 2013

October 23, 2008

Mary D. Nichols, Chairman California Air Resources Board Headquarters Building 1001 "T" Street Sacramento, CA 95812

Dear Chairman Nichols,

We, the undersigned 30 companies and individuals, are writing to provide comment on the

We are aware that proponents of including ILUC in the regulation argue that a preliminary quantification of ILUC is better than ignoring the impact all together; that "zero" is not the right number for ILUC for biofuels. While it is likely true that zero is not the right number for the indirect effects of any product in the real world, enforcing indirect effects in a piecemeal way could have very serious consequences for the LCFS. For example, zero is also not the right

the LCFS be careful in its regulatory approach if it is to foster sustainable fuel production.

The argument in favor of including ILUC in the LCFS is based on the belief that biofuels have significant indirect land use impacts, and ignoring them is the wrong public policy decision. The argument against including ILUC in the LCFS is based on the belief that the field of ILUC – and perhaps indirect impact modeling in general – is too uncertain to regulate at this time.

effects, they must be enforced against all fuel pathways. The argument that zero is not the right number does not justify enforcing a different wrong number, or penalizing one fuel for one category of indirect effects while giving another fuel pathway a free pass.

ripple effects of any given market decision in the global economy. Indirect impacts have not been enforced by any regulatory agency against any product in the world. Indirect impacts, whether applied to biofuels or any other fuel, occur as a consequence of a myriad of nested, policy and socio-economic variables. An article published in *BioScience* magazine captures the complexity of indirect effects, as they relate to deforestation: "[a]t the underlying level, tropical deforestation is ... best explained by multiple factors and drivers acting synergistically rather than by single-factor causation, with more than one-third of the cases being driven by the full interplay of

April 21, 2009

Mary D. Nichols, Chairman California Air Resources Board Headquarters Building 1001 "I" Street Sacramento, CA 95812

Dear Chairman Nichols,

As scientists and economists with relevant expertise, we are writing to recommend that you include indirect land use change in the lifecycle analyses of heat-trapping emissions from biofuels and other transportation fuels. This policy will encourage development of sustainable, low-carbon fuels that

As scientists and economists with relevant expertise, we are writing to recommend that you include indirect land use change in the lifecycle analyses of heat-trapping emissions from biofuels and other transportation fuels. This policy will encourage development of sustainable, low-carbon fuels that avoid conflict with food and minimize harmful environmental impacts.

science. However, you should not delay inclusion of known sources of emissions, including indirect emissions from biofuels, pending discovery of potential effects from other fuels.

Recent peer-reviewed research indicates that conventional biofuels can directly or indirectly result in substantial heat-trapping emissions through the conversion of forests and grasslands to croplands to

There are uncertainties inherent in estimating the magnitude of indirect land use emissions from biofuels, but assigning a value of zero is clearly not supported by the science. The data on land use change indicate that the emissions related to biofuels are significant and can be quite large.

change indicate that the emissions related to biofuels are significant and can be quite large.

Grappling with the technical uncertainty and developing a regulation based on the best available science is preferable to ignoring a major source of emissions. Over time, greater accuracy and detail in a more refined analysis can be reflected in future LCFS rulemakings.

The need to address uncertainties applies to other areas the analysis as well, and we urge you to evaluate the increasing use of nitrogen fertilizers and herbicides associated with greater biofuel production. In particular, nitrogen fertilizers enhance the emission of nitrous oxide—a powerful greenhouse gas in Earth's atmosphere.

The interactions between climate and bioenergy **Sofie Spring School** - Peking University – April, 8th 2013

State of California AIR RESOURCES BOARD

Resolution 09-31

April 23, 2009

Agenda Item No.: 09-4-4

WHEREAS, sections 39600 and 39601 of the Health and Safety Code authorize the Air Resources Board (ARB or the Board) to adopt standards, rules and regulations and to do such acts as may be necessary for the proper execution of the powers and duties granted to and imposed upon the Board by law;

WHEREAS, the California Global Warming Solutions Act of 2006 (AB 32; Stats 2006, ch. 488, Health and Safety Code sections 38500-38599) declares that global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California, and creates a comprehensive multi-year program to reduce California's greenhouse gas (GHG) emissions to 1990 levels by 2020;

WHEREAS, section 38510 of the Health and Safety Code designates ARB as the State

For some crop-based biofuel pathways, the certified carbon intensity values would also account for additional GHG emissions that can result from changes in land use arising from use of the biofuels; the Global Trade Analysis Project (GTAP) model is to be used to evaluate the worldwide land use conversion associated with the production of crops for fuel production;

Board to adopt regulations on or before January 1, 2010 to implement the Discrete Early Action Measures; these regulations are to be enforceable no later than January 1, 2010;

WHEREAS, section 38560.5(c) of the Health and Safety Code provides that the regulations adopted to implement Discrete Early Action Measures must achieve the maximum technologically feasible and cost-effective reductions in GHG emissions;

WHEREAS, in January 2007, Governor Schwarzenegger issued Executive Order S-01-07, which established the goal of developing a low carbon fuel standard (LCFS) to reduce the carbon intensity of transportation fuels by at least 10 percent by 2020; the Executive Order provides that the LCFS shall apply to all providers of transportation

California's Low Carbon Fuel Standard

(An Update on the California Air Resources Board's Low Carbon Fuel Standard Program)

To help address indirect land use issues, the Board, at the April public hearing, directed staff to convene an expert workgroup to assist staff in refining and improving the land use and indirect effect analysis of transportation fuels and to return to the Board no later than January 1, 2011, with regulatory amendments or recommendations, if appropriate, on approaches to address issues identified. Staff is to coordinate this effort with similar efforts by the U.S. EPA, European Union, and other agencies pursuing a low carbon fuel standard.

October 2009

California Environmental Protection Agency
Air Resources Board

Overview of some alternatives

Cultivating on Abandoned Agricultural Lands

Two studies

The Global Potential of Bioenergy on Abandoned Agriculture Lands

J. ELLIOTT CAMPBELL,*.*.*

DAVID B. LOBELL,* ROBERT C. GENOVA,*

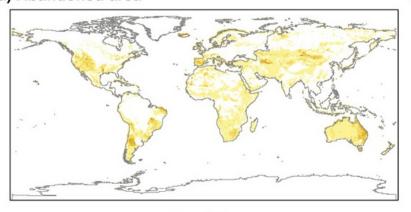
AND CHRISTOPHER B. FIELD*

Department of Global Ecology, Carnegie Institution of Washington, Stanford, California 94305, Department of Biological Sciences, Stanford University, Stanford, California 94305, and Program on Food Security and the Environment, Stanford University, Stanford, California 94305

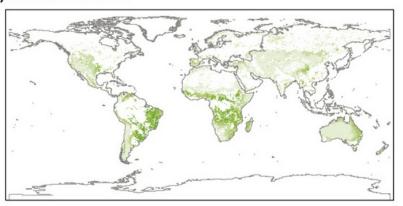
Received January 7, 2008. Revised manuscript received April 7, 2008. Accepted May 22, 2008.

Biomass energy: the scale of the potential resource

Christopher B. Field¹, J. Elliott Campbell¹ and David B. Lobell²

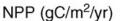

Trends in Ecology and Evolution, 2007

Envir. Sci. Technol., 2008

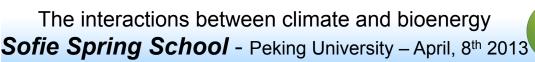


Potential area and associated NPP

(a) Abandoned area


(b) Abandoned NPP

TRENDS in Ecology & Evolution

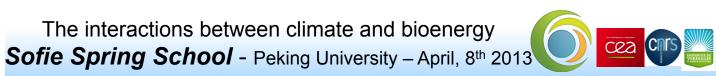


At global scale

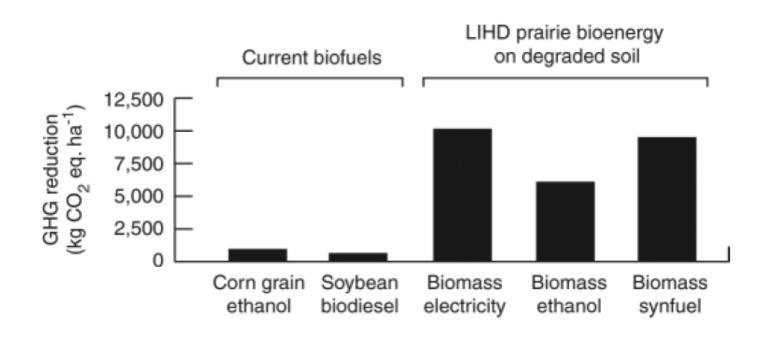
- Quelques ordres de grandeur:
 - Global area: ~400 Mha
 - Mean NPP : ~3 tC ha⁻¹ an⁻¹
 - 50% of shoot biomass, 45% C, energy content: 20
 kJ g⁻¹
 - => 5% of global energy demand
- Conclusion
 - Maximum to not exceed
 - On a larger area -> food vs fuel competition

2^d generation biofuels

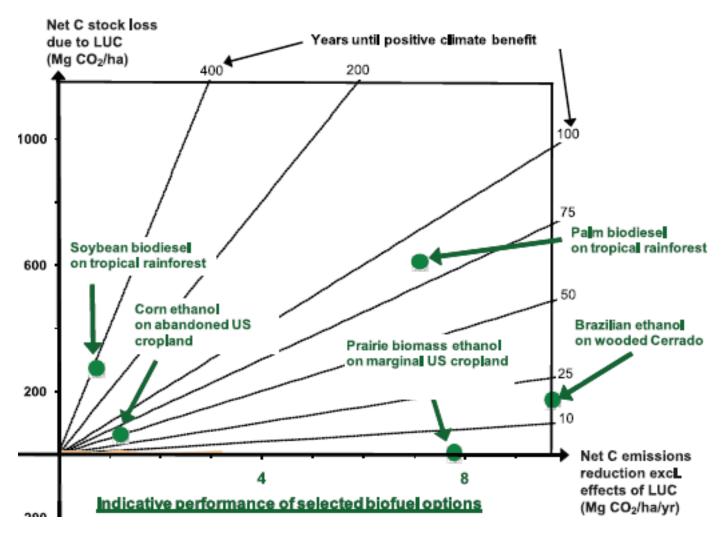
For instance, Tilman (2006)


Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass

Science, 2006


David Tilman, 1* Jason Hill, 1,2 Clarence Lehman 1

- Bioenergy production from perennial herbaceous species (Low Input High Diversity (LIHD) grasslands)
 - Good energy yield
 - High GHG mitigation potential

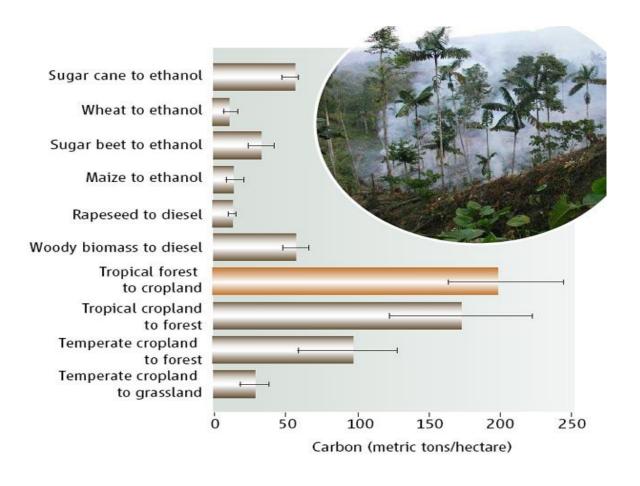


Comparison to first generation biofuels

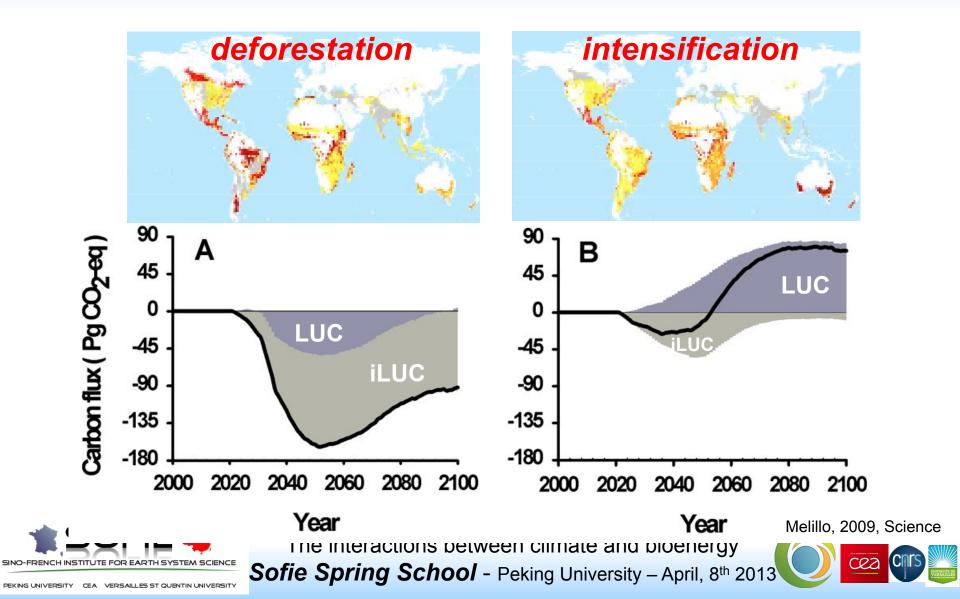
Contracting a carbon debt

Source: IEA Bioenergy, 2008 d'après Fargione, 2008

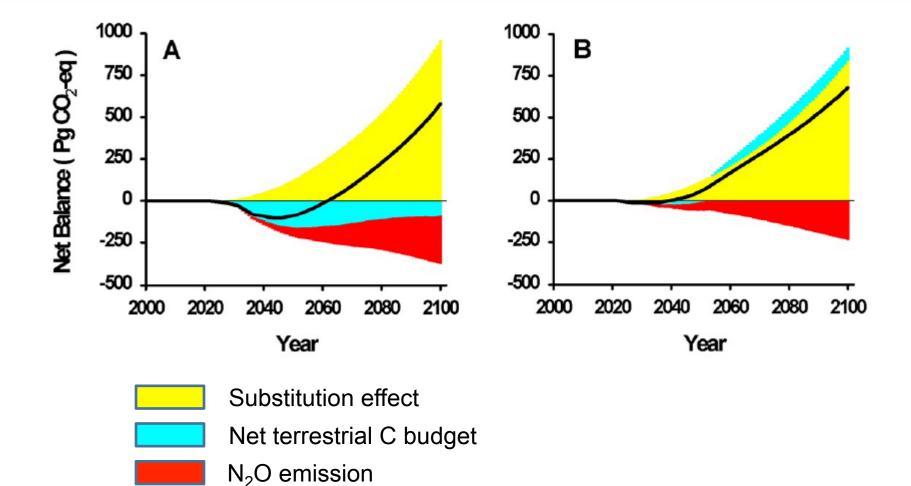
Rather than growing biofuels...plant forests

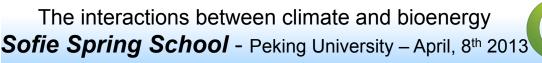

 A study of Righelato et al. (2007) based on estimations of LUC impact on C budget

 The environmental benefit of the sequestration can be larger than the one by substitution effect

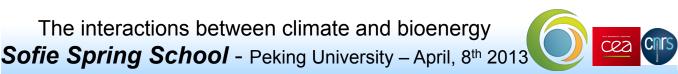

Carbon Mitigation by Biofuels or by Saving and Restoring Forests?

Renton Righelato* and Dominick V. Spracklen


Science, 2007


At least, save forests

Net GHG budget


A market-based mechanism

 Reduce emissions from deforestation and degradation = REDD

 Based on a Carbon market, to give a market value to the avoided emissions due to deforestation

Mitigation potential: ~0.75 GtC yr⁻¹

Some references

Articles

- Crutzen, P.J., Mosier, A.R., Smith, K.A., et al., 2007. N2O release from agrobiofuel production negates global warming reduction by replacing fossil fuels, Atmospheric Chemistry and Physics Discussions, 7, 11191-11205.
- Tilman, D., Hill, J., Lehman, C., 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass, Science, 314, 1598-1600.
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238.
- Field, C. B.; Campbell, J. E.; Lobell, D. B. Biomass energy: the scale of the potential resource. Trends Ecol. Evol. 2007, 23 (2), 65–72.
- Righelato, R.; Spracklen, D. V. Carbon mitigation by biofuels or by saving and restoring forests. Science 2007, 317, 902.
- Gerbens-Leenes W, Hoekstra AY, Van der Meer TH, (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106:10219–10223.
- T. Searchinger, R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and T.-H. Yu (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change.

Science 319, 1238-1240

The interactions between climate and bioenergy **Sofie Spring School** - Peking University – April, 8th 2013

Some references (2)

Reports

- FAO, 2013. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks, 188 p., Rome
- Chum, H., A. Faaij, J. Moreira et al., 2011: Bioenergy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press
- IEA, 2004. Biofuels for Transport An International Perspective, Paris, International Energy Agency
- Food and Agriculture Organisation. State of Food and Agriculture - Biofuels: Prospects, Risks and Opportunities; FAO: Rome, 2008.
- WBGU (German Advisory Council on Global Change), World in Transition: Future Bioenergy and Sustainable Land Use (Earthscan, London, 2009).

