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Surface reflectance time series measured from space borne instruments, such as the MODIS sensor, show an
apparent high-frequency noise that limits their information content. A major contributor to this noise is the
directional effect as the target reflectance varies with the observation geometry. The operational MODIS pro-
cessing inverts the parameters of a BRDF model which are provided in the so-called MCD43C2 product with a
frequency of (8 days)−1. Recently, Vermote et al. (2009) suggested an alternative BRDF inversion method. A
major assumption is that the BRDF model shape (i.e. the BRDF normalized by its overall amplitude) varies lit-
tle throughout the year so that the two model parameters are linear functions of the NDVI. Consequently, a
given target BRDF shape is described by four parameters (slope and intercept for the two NDVI-dependent
parameters) rather than 2 parameters that change for each 8 days period. This method imposes additional
constrain for the surface BRDF inversion.
In this paper, we evaluate the performance of these two approaches for the correction of surface reflectance
time series. We work at the 0.05° (≈5 km) resolution of the CMG grid and analyze a representative set of
+100 targets selected on the basis of the location of AERONET sites. The performance is quantified by the
high-frequency noise in the corrected time series. We demonstrate that the performances of the two ap-
proaches are very similar. This result demonstrates that a simple four-parameter NDVI-scaled model per-
forms as well as a more complex model with many more degrees of freedom. Besides, the four-parameter
model, which is inverted on a given year, can be applied to the measurements of other years with a similar
level of performance. Finally, a single “averaged” model can be applied to any target with a performance
that is only slightly reduced compared to what is achieved with a model derived through a full inversion
of the multi-temporal data.
The proposed four-parameter BRDF model permits the reduction of noise in the reflectance time series by a
factor of the order of three in the red and four in the near infrared. After correction, the reflectance time series
are very clean, with an apparent noise that is ≈0.005 in the red band and 0.01 in the near infrared. The qual-
ity of the BRDF correction makes it possible to use the individual reflectance time-series at high temporal res-
olution, rather than indices based on their ratio, and thus retain more information about the vegetation
dynamics.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is now more than ten years since the MODIS (MODerate resolu-
tion Imaging Spectrometer) instruments on-board Terra and Aqua are
providing a daily near-complete view of the Earth. The measurements
from these instruments allow countless applications from climate
studies, from crop-yield prediction to disaster monitoring. One such
application is the monitoring of vegetation coverage and dynamics.
Indeed, the red and Near Infrared (NIR) channels at 250 m resolution
(bands 1 and 2) are used to identify the presence of vegetation and to
quantify its photosynthetic activity. The fraction of sunlight reflected
by the surface depends on the surface cover. Vegetation reflectance is

high in the NIR, while chlorophyll absorption makes it much lower in
the visible.

Surface reflectance time series from the MODIS sensors, but also
from other imaging instruments such as VGT (Maisongrande et al.,
2004) or MERIS (Bezy et al., 2000), can then be used to follow the
vegetation cycle and to identify inter-annual anomalies. There are a
number of difficulties that affect the quantitative use of the space
borne measurements. One is the calibration, another one is the cor-
rection of the atmospheric effects (Vermote et al., 2009), while the
one discussed in this paper is the correction of directional effects. In-
deed, the reflectance of an Earth target varies strongly with the obser-
vation geometry (both sun and view directions). The maximum
reflectance is commonly observed in the backscatter direction (view
and sun directions coincide) with a sharp increase within a few de-
grees (Breon et al., 2002). Conversely, the minimum reflectance is
generally observed in the forward direction, and this minimum is
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over a very broad range of view directions. The ratio of maximum to
minimum reflectance can be up to 5 in the red and 3 in the NIR
(Breon et al., 2002). One option, to limit the impact of directional ef-
fect, is to use only those observations that are close to nadir viewing.
This is a serious limitation as it strongly reduces the number of usable
observations. Besides, it does not correct for the impact of sun angle
variations. Another option is to use so called vegetation indices such
as the NDVI (Normalized Difference Vegetation Index, (Tucker,
1979)) or the EVI (Enhanced Vegetation Index, (Huete et al., 2002)).
Indeed, as the directional signatures are similar in the red and NIR
bands, reflectance ratios or any index based on reflectance ratios,
are less sensitive to directional effect than individual reflectances.
However, there are still significant directional signatures in the vege-
tation indices (Sims et al., 2011). In addition, some information on the
vegetation change is lost in the use of ratios compared to the original
reflectances (Baret & Guyot, 1991). The reflectance variations in the
various spectral bands contain some information about the vegeta-
tion structure and leaf pigments that is lost in the vegetation index
(Houborg et al., 2007). It is then desirable to correct the directional ef-
fects in the measured reflectance time series.

The reflectance variation with the viewing geometry are quanti-
fied by the Bidirectional Reflectance Distribution Function (BRDF)
that is a function of the sun zenith angle θs, the view zenith angle θv
and the relative azimuth angle ϕ. We implicitly assume that the target
has no preferred direction so that only the relative azimuth, and not
both the sun and view azimuth, intervenes in the BRDF.

The purpose of this paper is to quantitatively evaluate three
methods for the correction of directional signature effects in reflec-
tance time series. The first method uses the official MODIS BRDF prod-
uct that is derived from the measurements of both MODIS/Terra and
MODIS/Aqua over a period of 16 days (Schaaf et al., 2002). An alter-
native method uses a model that is inverted from the measurements
acquired over a full year, assuming that the target BRDF shows limit-
ed changes that are linked to the NDVI (Vermote et al., 2009). Finally,
we also evaluate the performance of the correction model with a sin-
gle set of parameters, representative of all snow-free land surfaces.

Section 2 presents the data and methods used in this paper.
Section 3 shows the results; section 4 discusses the results and
concludes.

2. Data and method

2.1. Parametric BRDF models

A practical inversion of reflectance measurements in terms of
BRDF parameters, suitable for directional effect correction, necessi-
tates the use of analytical models. Although several authors favour
the use of non-linear BRDF models, such as RPV (Rahman et al.,
1993) (Lavergne et al., 2007), linear models are widely used to fit a
set of reflectance measurements. Indeed, (Maignan et al., 2004)
shows that a linear model matches a set of multi-directional reflec-
tance measurements from the space borne POLDER instrument with
a similar quality as RPV does, and even better on average.

Widely used linear BRDF models compute the reflectance ρ as the
sum of three terms (Roujean et al., 1992):

ρ θs; θv;ϕð Þ ¼ k0 þ k1F1 θs; θv;ϕð Þ þ k2F2 θs; θv;ϕð Þ
¼ k0 1þ k1

k0
F1 θs; θv;ϕð Þ þ k2

k0
F2 θs; θv;ϕð Þ

� � ð1Þ

where F1 is the volume scattering kernel, based on the Ross-Thick
function and F2 is the geometric kernel. F1 is a semi-physical function
that attempts to reproduce the BRDF of a thick vegetation layer. F2 is
also based on physical consideration, but for hypothetical surface
with protrusions. F1 and F2 are fixed functions of the observation

geometry, but k0, k1 and k2 are free parameters. In the following, we
will use V (for Volume) as k1 /k0 and R (for Roughness) as k2 /k0.

The operational processing of MODIS to compute surface BRDF
and Albedo is based on this three-parameter linear model with the
Ross-Thick and Li-Sparse kernels (Schaaf et al., 2002). The analysis
of POLDER multidirectional measurements against several BRDF
models (Maignan et al., 2004) has shown that a slightly better fit to
space borne measurements could be obtained through a correction
of the Ross-Thick function (F1) to account for the so-called Hot-Spot
effect (Breon et al., 2002). This model correction is only significant
when the observation geometry is close to the backscatter direction,
which is seldom sampled by passive sensors. Nevertheless, we rec-
ommend the use of a corrected version of the Ross-Thick function F1
as in (Maignan et al., 2004) for a better representation of the direc-
tional signature close to backscatter and also to allow comparisons
with active sensing that is sensitive to the BRDF in the exact backscat-
ter direction.

The correction of the directional effects is done by putting the
measurement in a standard observation geometry. In the following,
the standard observation geometry is for a sun at 45° from zenith
and the observation at nadir. This is an arbitrary choice, but it is a typ-
ical geometry for space borne remote sensing and is not affected by
the strong directional signature close to backscatter. The normalized
reflectance, ρΝ, is therefore computed as:

ρN 45;0;0ð Þ ¼ ρ θs; θv;ϕð Þ 1þ V F1 45;0;0ð Þ þ RF2 45;0;0ð Þ
1þ V F1 θs; θv;ϕð Þ þ RF2 θs; θv;ϕð Þ ð2Þ

In the following text, for simplicity and efficiency of writing, the N
superscript always refers to the standard observation geometry and
we drop the explicit notation to θs, θv and ϕ. Eq. (2) becomes:

ρN ¼ ρ
1þ V FN1 þ RFN2
1þ V F1 þ RF2

ð3Þ

2.2. MODIS reflectance

Our analysis is focused on MODIS bands 1 (red: 620–670 nm) and
2 (NIR: 841–876 nm). These bands are the most widely used for land
surface monitoring and they cover a wide range of reflectance over
vegetated surfaces. The original measurements have a nominal spatial
resolution of 250 m for those channels, although it degrades with the
view angle. For practical purposes of data volume, and also to limit
the noise induced by the increase in pixel size at large view angles
(Wolfe et al., 1998), the present study uses data aggregated at the
lower (0.05°, ≈5 km) resolution of the CMG grid (Climate Modelling
Grid). This grid is used for a number of MODIS products, including the
MCD43C2 product that provides BRDF parameters and Albedo for
snow-free conditions at the global scale. We have averaged the orig-
inal measurements at 250 m resolution within the corresponding
CMG pixel. We use both MODIS/Aqua and MODIS/Terra measure-
ments indiscriminately. The analysis shown below is primarily
based on the measurements acquired during 2003, although we also
processed the measurements of 2004 and 2005 to analyze the BRDF
shape variability. The original 250 m measurements were extracted
from the MOD09 surface reflectance product (Vermote et al., 2002;
Vermote & Kotchenova, 2008) that is corrected for the atmospheric
effect (molecular and aerosol scattering and absorption, ozone and
water vapour absorption). The data were also filtered for cloud,
cloud shadow and snow according to the internal quality flags provid-
ed in the MOD09 product. For a consistent analysis of multi-temporal
data, we only kept the CMG observation if all high-resolution pixels
were clear.

2 F.-M. Bréon, E. Vermote / Remote Sensing of Environment 125 (2012) 1–9
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2.3. Selected sites

Our analysis uses a set of representative land surface targets. The
selection is based on the location of the stations of the AERONET
(AErosol RObotic NETwork) sun photometer network (aeronet.
gsfc.nasa.gov). A few stations are located on a coastline and the
corresponding pixel contains a large fraction of water. In such cases
(i.e. when the water fraction is larger than 15%), rather than using
the CMG pixel that contains the sun photometer station, we use the
adjacent pixel containing the least water. After this adjustment, 5 sta-
tions, all located on islands, were still contaminated by a large frac-
tion of water and were eliminated from our selection. In addition,
we selected only the pixels with more than 70 MODIS measurements
during the year, including both Terra and Aqua. From the original set
of 140 AERONET stations, we retained 115. The sites locations are
shown in Fig. 1 and listed in Table 3 of the Supplementary material.
Although not homogeneously distributed, this selection covers a
wide range of surface types and geometries of observation.

2.4. MCD43C2 product

TheMCD43C2 product provides the 3 ki BRDF parameters (Eq. (1))
for the red and NIR bands, together with the Albedo and results for
other spectral bands. This product is given at the CMG resolution
and is therefore compatible with the surface reflectances we aggre-
gated. We have verified that the MCD43C2 product is consistent
with the result of our averaging at 0.05° from the original 250 m re-
flectances, i.e. that the spatial structures of the two are highly corre-
lated, indicating that we did not introduce any spatial shift. The
MCD43C2 product is provided at a temporal resolution of 8 days,
but is derived from a combination of Aqua and Terra measurements
over a 16 days period. The method for the BRDF model inversion is
described in (Schaaf et al., 2002). In Fig. 3, left, three examples of
time series of the BRDF parameter ratios (i.e. V=k1 /k0, R=k2 /k0)
are shown. V and R follow an annual cycle that is likely the result of
the growth and senescence of vegetation. However, the model pa-
rameters also exhibit significant high-frequency variability that is un-
realistic and probably result from instabilities in the inversion
procedure or noise in the input reflectances (Ju et al., 2010).

2.5. Alternative model

An alternative method was proposed in (Vermote et al., 2009),
hereafter referred to as VJB. There are three main hypothesis in this
method: (i) the target BRDF can be represented with a linear model

as in Eq. (1); (ii) the model parameters V and R vary linearly with the
NDVI over the full year; and (iii) the normalized reflectance, e.g. k0(t),
varies slowly so that its variation between three successive measure-
ments is linear in time. A minimization of the high frequency variations
of the BRDF-corrected reflectance is used to invert the model parame-
ters independently for the different spectral bands. One major differ-
ence with the MODIS BRDF product (MCD43C2) is that a full year of
measurements is used to invert the model, instead of a 16 days period.
In Fig. 3, left panel, the R and V parameters for 3 sites selected among
those in our study are shown as symbols. There is less high-frequency
variability than with the official product (lines) but this cannot be
used as an indication of robustness as the two parameters are linear
function of the NDVI so that their short-term variability is directly
linked to that of the vegetation index.

The retrieved R has a similar order of magnitude for MCD43 and
VJB. We recall that the F1 functions are not exactly the same for the
two correction methods but the differences are only significant in a
viewing geometry close to backscatter, so that the ki parameters are
directly comparable. It is interesting to note that the two methods
show similar annual cycles for V and R, despite the high frequency
temporal variations in the MCD43C2 results.

One may question the use of the NDVI as a proxy to quantify the
BRDF signature. In addition, other vegetation indices have been pro-
posed and show better performance for some applications. The pri-
mary reason for using the NDVI is that BRDF have been shown to be
significantly different for bare soil and vegetated surfaces, because
vegetated surfaces show higher anisotropy than bare soil do
(Bacour & Breon, 2005). The NDVI is a parameter that is sensitive to
the presence of vegetation, and easy to derive from the measure-
ments that we seek to correct. However, although the NDVI is much
less sensitive to directional effects than the reflectances are, there is
still some directional signature that translates into noise on the
NDVI, and therefore R and V. One way to (partly) account for this
noise is to compute a NDVI from the original measurements, estimate
the BRDF model (R and V), correct the reflectance measurements,
compute a corrected NDVI, and make a new estimate of R and V
that shall be less sensitive to NDVI changes. This iterative procedure
was not applied for the results presented here.

2.6. Averaged model

Fig. 2 shows R and V for the 115 selected sites. There are four plots
that correspond to the two bands and the two (R and V) parameters,
which are shown as a function of NDVI. Each segment corresponds to
one target site. The X-axis range of each segment corresponds to the

Fig. 1. Location of the targets used in this paper for BRDF evaluation. The selection was based on the location of AERONET sites. For a few sites located along the coast (i.e. when the
fraction of land within the corresponding CMG pixel is less than 85%) we selected the adjacent pixel with the largest land fraction. The circles highlight the three sites that are
shown in Fig. 3.

3F.-M. Bréon, E. Vermote / Remote Sensing of Environment 125 (2012) 1–9
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range of NDVI during the year for that particular target (at 5% and 95%
of the measurements cumulative histogram). The Y-axis values are
then computed from the slope and intercept values of the respective
parameters:

R ¼ RslopeNDVI þ Rintercept
V ¼ VslopeNDVI þ Vintercept

ð4Þ

On the one hand, there is significant variability of the BRDF pa-
rameters among the sites as shown in Fig. 2. On the other hand, the
mean value of each parameter is significantly different than zero. Be-
sides, there is a general trend with the NDVI, at the very least for Rvis
and Vnir. These observations suggest the definition of an “averaged”
model for V and R, represented by a black line in Fig. 2. The slopes
and intercept values that define this “averaged” model are provided
in Table 1. One question that is discussed in the following is whether
this model, which would only be a function of the local NDVI, can be
used for the correction of directional signatures in reflectance time
series. Fig. 2 shows that there is significant variability around the
mean so that the BRDF variability is not a sole function of the NDVI.
Thus, the question is: what fraction of the BRDF-induced “noise” can
be corrected by the “averaged” model? and what is the residual
noise when using such correction?

2.7. Evaluation method

To quantify the impact of the correction on the reflectances or
the vegetation indices, we compute an estimate of the noise. This
estimate assumes a linear variation of the reflectance between
two dates a few days apart. Given three successive reflectance

measurements, the two extremes can then be used to estimate a
reflectance value for the one in the middle:

R�
i ¼

dayi−dayi−1ð ÞRiþ1 þ dayiþ1−dayi
� �

Ri−1

dayiþ1−dayi−1
ð5Þ

An error is computed from the difference of this estimate with the
actual measurement (either corrected or not). For a set of N observa-
tions during the year, there is N−2 such triplets that are used to com-
pute a statistical noise:

σ2 Rð Þ ¼
∑N−1

i ¼ 2
1

dayiþ1−dayi−1
R�
i −Rið Þ2

∑N−1
i ¼ 2

1
dayiþ1−dayi−1

ð6Þ

The reasoning that leads to this expression for the quantification
of the noise is detailed in the appendix. Note that the weighting by
(dayi+1−dayi−1)−1 gives less weight to the measurements triplets
that are distant in time. We make this choice as non-linear variations
of the reflectance with time may be expected for long time periods.
Fig. 3, right, shows several reflectance time series and provide σ for
each of them (numbers within the plots). The values of σ are consis-
tent with the visual quality of the different time series.

Eqs. (5) and (6) provide an objective method for assessing the
quality of a BRDF correction. Clearly, the BRDF “noise” is not the
sole contributor to σ. Other contributors are atmospheric correction
errors, measurement noise, and non-linear reflectance temporal var-
iations. However, these are the same for all BRDF correction methods
so that the value of σ may be used to compare and rank the perfor-
mance of several methods.

One may ask what is the relationship between σ and the noise of
individual measurements. Let us assume that the measurements, ei-
ther before or after directional correction, are affected by a purely
random -uncorrelated- noise ε. We acknowledge that this is not
fully true as there may be some correlated error as a result of direc-
tional effects, or biases in the directional correction. The relationship
between σ and ε also depends on the distribution of the time inter-
vals. If we assume that there is an independent measurement every
day, then σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

3=2
p

ε. At the other extreme, if there are very few
measurements randomly distributed, then σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

5=3
p

ε. A rather

Fig. 2. R (top) and V (bottom) parameters as a function of NDVI for the sites analyzed in this paper. Red (channel 1) is on the left while Near Infrared (channel 2) is on the right. Each
line segment corresponds to one site and is drawn using the corresponding NDVI variability for this site. The thick black line indicates the “averaged” model.

Table 1
Typical values for the slope and intercept that define V and R as a function of the NDVI
(see Eq. (4) and Fig. 2).

R V

Slope Intercept Slope Intercept

Band 1 (Vis) 0.2 0.1 1 0.5
Band 2 (NIR) −0.05 0.15 2 0.5

4 F.-M. Bréon, E. Vermote / Remote Sensing of Environment 125 (2012) 1–9
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good approximation is therefore σ≈1.25 ε. These results derive from
a simple statistical analysis of Eqs. (5) and (6).

3. Results

3.1. BRDF parameter variability

Fig. 3 (left) shows three examples of BRDF parameters variability.
The lines show the MODIS official product (MCD43C2) while the dots
correspond to the VJB method. As said above, the variability in the VJB
parameters (R and V) are directly linked to NDVI variability. Its rela-
tive stability throughout the year is therefore imposed by the method.
On the other hand, the MCD43C2 parameters show significant high
frequency variability. One does not expect the surface to change sig-
nificantly between the 16 days periods with such large impacts on
the BRDF parameters (Quaife & Lewis, 2010). Some of the variations
in R and V are anti-correlated (see in particular the large swings for
the Ispra site, top). These variations can be explained by the fact
that, for some observation geometry configurations, F1 and F2 are
far from orthogonal or, in other words, highly correlated, so that the
inversion of their respective parameters is poorly constrained. But

in some cases, a large variation in R (resp. V) is not linked to a similar
variation in V (resp. R) (see for instance a large short-term drop of R
early August for the Bethlehem site).

Fig. 3 only shows results for band 2 (NIR) but similar results have
been analyzed for band 1. For the latter, the high-frequency variations
of MCD43C2 parameters that we interpret as noise are more pro-
nounced than for band 2 while the noise in the VJB parameters is
not substantially different than for band 2.

3.2. Reflectance time series

Fig. 3 (right) shows three examples of reflectance time series. The
black dots are the original measurements. Red, blue and green are the
same measurements after correction by VJB model, MCD43C2 model,
and “averaged” model respectively. The numbers provide the
high-frequency noise (see Eq. (6)) expressed ×100. The lines are
the results of a smoothing interpolation through the data points.
Clearly, all three BRDF models allow an excellent correction of the
high-frequency noise in the measurements. This confirms, if needed,
that the dominant contributor to the noise in the reflectance time se-
ries is the directional effect. After correction, one can depict temporal

Fig. 3. Time series of R and V BRDF parameters (left) and near infrared (MODIS band 2) reflectance (right). The BRDF parameters (left column) are shown for both MCD43C2 MODIS
product (line) and for the result of the VJB method (dots). The surface reflectance time series (right column) are shown for the original measurements (black), after VJB correction
(red), after MCD43C2 model correction (blue) and for the averaged model correction (green). The lines show a simple temporal fit through the data points. The original measure-
ments (black) are the actual values, but the corrected reflectances have been shifted by 0.05 (red), 0.1 (blue) and 0.15 (green). The numbers in the right plots are the temporal noise
σ [×100] as defined in Eq. (6) with matching colors. The selected sites are Ispra (Forest/urban), Maricopa (Crops/Desert), and Bethlehem (Crops). For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.

5F.-M. Bréon, E. Vermote / Remote Sensing of Environment 125 (2012) 1–9
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signatures in the reflectances that are undistinguishable from the
noise in the original time series. On these figures, none of the three
BRDF correction methods performs significantly better than the
others although the quantitative indicator is somewhat consistently
larger (and therefore not as good) for the “averaged” model. Clearly,
there is a need for a larger dataset to state whether one method is
better than another.

Note that the large swings on the MCD43C2 parameters do not
have a discernable impact on the reflectance time series. There are a
few measurements that appear clearly anomalous through each cor-
rection method (see for instance a few points that are clearly below
all their neighbours in the right-bottom plot of Fig. 3). These probably
result from an undetected shadow or an error in the atmospheric cor-
rection. Such measurements should be eliminated from the time
series when analyzing the surface dynamic, and their identification
is clearly much easier after directional correction than before. The
“averaged” model does not need any data inversion or extraneous in-
formation, and is therefore well suited for that purpose.

3.3. Correction performance

Fig. 4 shows scatter plots of the apparent noise σ (×100) (see
Eq. (6)) for the various correction methods. The X-axis is the result
of the VJB method, while the Y-axis is, from top to bottom, the origi-
nal measurements, the measurements corrected using the MCD43C2
parameters, the “averaged” model method, and VJB method but
using the retrieved coefficients from another year (2005 coefficients
to correct 2003 measurements). The left (right) column is for the
red (NIR) band. The top plots confirm that the original time series
are always much noisier than their corrected counterparts. The
other plots indicate that the three methods have similar perfor-
mances. The variability between sites is much larger than the differ-
ences between the correction methods. This indicates that the
residuals of the BRDF correction are small compared to the other
sources of error. For the “averaged” model (third line from top), most
points are above the 1:1 line, which indicates that it does not perform
as well as the VJB correction. Nevertheless, the performance of this
“averaged” model appears adequate for most sites. Some applications
may want to trade accuracy for simplicity and use the “averaged”
model (Table 1) for a BRDF correction that applies to all pixels, bare
soils or vegetated.

Conversely, the points on both lower plots are very much aligned
around the 1:1 line. This shows that the VJB model parameters that
are inverted from the measurements of a given year (here 2005)
can be used to correct the measurements of another year. This result
opens the way for a near real-time correction where the inverted
BRDF parameters from the previous year (or another) are used to cor-
rect the measurements for directional effects.

Fig. 5 provides another presentation of the relative performance of
the various model corrections. Each line shows a cumulative histo-
gram of σ (×100) (see Eq. (6)). The X axis has a logarithmic scale to
better depict the differences for the low values (best targets). These
figures confirm previous results: all correction methods allow a
large reduction in apparent noise in the time series. The averaged
model has slightly less good performances than the others. There is
no significant difference between VJB and MCD43C2, although the
former appears slightly better (cumulative histogram to the left), in
particular for the lower range of values. One may argue that these
correspond to the “best” targets where the contributions of noise fac-
tors other than the directional effects are smallest. Only for such tar-
gets does the impact of the small difference between BRDF models
become apparent. A similar observation was made in (Maignan et
al., 2004).

Table 2 provides typical values for the apparent noise (×100) in
the time series for the non-corrected measurements as well as for
the various correction methods. We provide the median value, as

well as a typical value for the “best” targets, i.e. the value at 20% of
the cumulative histogram of Fig. 5. The table provides quantitative
values from the curves of Fig. 5 and quantifies the performances of
the various methods. Table 3, in Supplementary material, provides
the noise for each method and each of the targets used in this
paper. Before the directional correction, the typical noise in the reflec-
tance time series is close to 0.02 in the red and 0.04 in the
near-infrared. After the correction, the typical noise is 0.006 in the
red and close to 0.01 in the near-infrared. Overall, the typical reduc-
tion of noise is a factor of 3 in the red and 4 in the NIR. Table 2
shows that this ratio is the same for the best quality targets.

4. Discussion and conclusion

In this paper, we have compared the performances of several
methods to correct the directional effects in reflectance time series

Fig. 4. Scatter plot of the apparent noise σ (×100) of the reflectance and corrected re-
flectance time series (see Eq. (6)). Left is for the red (band 1), while right is for the near
infrared (band 2). The two lines are the 1:1 line and the best fit among the data points.
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acquired by the MODIS instruments. All methods extrapolate the
measurement to a standard geometry using a BRDF model. The
major difference between the official method and that of VJB is that
the former derives a different model for each 16 day periods, while
the latter hypothesizes that the two model parameters are linear
functions of the NDVI. As a consequence, the description of a target
BRDF for a full year (and even multiple years as was shown above)
is achieved through four parameters per spectral band, while the
same with the official model requires two parameters per period.
Clearly, using the VJB correction method is more practical as it re-
quires much fewer inputs. Using fewer parameters also leads to a
better-constrained inversion, with less instability in the results (see
Fig. 3 left). The results have shown that the two methods have a sim-
ilar performance for the correction of reflectance time series. An in-
teresting result is that, for a given target, the VJB coefficients of a
given year apply to the correction of measurements from another
year. The quality of the BRDF correction does not make it necessary
to use ratio-based vegetation indices such as the Normalized Differ-
ence Vegetation Index (Tucker, 1979) or the Simple Ratio, and thus
retain more information about the surface.

An important question is whether there is some added informa-
tion in the high frequency (daily; cloud cover permitting) monitoring
of the land surfaces. Indeed, simple low-pass filter through the mea-
sured reflectance would retain the annual cycle and remove the
high-frequency noise induced by the directional effects. However,
the near random sampling (occurrence of cloud cover for instance)
may favour some directions during a given period. These directions
may lead to a high or low bias in the smoothed values. If one selects
only some viewing geometries (such as close to nadir), it may result
in no observation during a long period. Thus, it appears desirable to
use all available directions and account explicitly for their observation
geometry. In addition, a careful analysis of the corrected time series
(see Fig. 3) clearly shows short-term features that are probably real
and would be smoothed out by a low-pass filter. Some applications,
such as the timing of phenology as a response of meteorological forc-
ing (Maignan et al., 2008), analyze signatures with a temporal resolu-
tion of one to a few days. Thus, there is certainly information in the
daily reflectance time series, even if it has received little attention
so far, due to a lack of proper measurement.

The time series of the BRDF parameters in the MCD43C2 product
show rather large temporal variations (Fig. 3, left). These are unrealistic
and cast doubt on the validity of the BRDF quantified by these parame-
ters. Yet, this paper demonstrates that these parameters allow an accu-
rate correction of the reflectance time series. One may see a
contradiction in an apparently very noisy set of BRDF parameters that
nevertheless leads to accurate values. The explanation lies in the sam-
pling of the BRDF. During a 16 days period, the MODIS/Aqua and
MODIS/Terra instrument provide a limited sample of the BRDF. Within
this sample, there is a high correlation between the F1 and F2 functions,
so that the retrieval of the V and Rweights are poorly constrained. How-
ever, these parameters allow an excellentfit to themeasurementsmade
during the analysis period, and are thereforewell suited for their correc-
tion. However, the corresponding BRDF does not necessarily apply to
measurements acquired with other observation geometries.

Conversely, the BRDF model derived through the VJB method is
constrained by a much wider set of observation geometries, and in
particular a large range of sun angles as a result of the seasonal
change, in addition to the view angle range. A single BRDF model ap-
plies for the full year of measurements. This is a strong indication that
the model is better constrained and can be used for a wide range of
observation geometries.

A significant outcome of this paper is the definition of a “typical”
BRDF model that is a function of the NDVI only. This rather simple
model might be use for a rough correction of BRDF effects in reflec-
tance time series. Although a full inversion of the BRDF model results
in better results, some applications, such as real time processing, may
want to trade accuracy for simplicity.

The present study has been performed at the CMG spatial resolu-
tion (≈5 km). One may argue that the results are applicable only at
this scale while finer scale BRDF are more anisotropic and show
more variability so that the simple NDVI-scaled model would not
apply. Indeed, airborne measurements have shown that the surface
BRDF depends on the spatial scale of the measurements (Roman et
al., 2011). However, in our opinion, there is no convincing indication
that surface BRDF are more anisotropic at finer scales, or that a simple
kernel-based BRDF model does not work at a finer scale than what is
used here. Nevertheless, it remains to be verified. This would be rela-
tively easy once the fine scale reflectance time series have been
downloaded, together with the result of the official BRDF product.
We have started this process and an analysis at the full MODIS reso-
lution will be the subject of a forthcoming paper. We are concerned
however that the degradation of the MODIS spatial resolution at
large view angle will generate additional noise in the measurements,
which will make the comparison of BRDF models more difficult.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.rse.2012.06.025.

Fig. 5. Cumulative histogram of the apparent noise of the reflectance and corrected re-
flectance time series. Top is red (band 1) whereas bottom is Near InfraRed (band 2).

Table 2
Typical noise (×100) for the reflectance time series in the red and Near Infrared bands
for the original data and the various directional corrections. The values are extracted
from Fig. 5 and show the median noise (i.e. value at 50% of the cumulative histogram),
as well as the typical noise for the “best” targets (i.e. value at 20% of the cumulative
histogram).

Red Near infrared

20% histo Median 20% histo Median

Measurements 1.26 1.88 3.18 3.94
VJB Corr. 0.44 0.62 0.70 0.90
MCD43C2 Corr 0.46 0.60 0.76 0.96
“Averaged” model 0.50 0.68 0.88 1.14
VJB 2005 Coeffs. 0.48 0.64 0.78 0.96
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Appendix A. Justification for error quantification

In this Appendix, we explicit the reasoning that leads to the error
quantification as in Eq. (6).

The surface reflectance in a standard observation geometry shows
a time evolution R(t). The satellite data provide a sampling of this
evolution at discrete times ti. We therefore have to evaluate the accu-
racy of an ensemble Ri that provides an estimate of R at ti (1≤ i≤N
where N is the number of samples).

Clearly, the best would be to compare the ensemble Ri to the truth
and compute an RMS error such as

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Ri−R tið Þð Þ2
vuut ðA� 1Þ

The trouble is, we have no independent knowledge of R(t) and
therefore cannot compute the rmse this way. This is why one needs
an alternative. The alternative is to use the hypothesis that R(t) varies
slowly in time so that its temporal variation are very close to linear.
This assumption can be written mathematically as:

R t2ð Þ ¼ t2−t1ð ÞR t3ð Þ þ t3−t2ð ÞR t1ð Þ
t3−t1

þδ t1; t2; t3ð Þ; δj j << R t3ð Þ−R t1ð Þj j
ðA� 2Þ

In the following, we assume that δ is small compared to the noise
in the reflectance estimates and can be neglected. The N values of Ri
provide estimates of R(ti). Then

Ri ¼ R tið Þ þ ε ðA� 3Þ

We search for the statistical properties of ε. We make the assump-
tion that the εi are independent. From the time series of normalized
reflectances Ri we can build (N−2) triplets [Ri-1, Ri, Ri+1]. Our quan-
tification of the noise (Eq. (6)) is based on

σ2 Rð Þ ¼
∑N−1

i¼2
1

tiþ1−ti−1
R�
i−Rið Þ2

∑N−1
i¼2

1
tiþ1−ti−1

ðA� 4Þ

where

R�
i ¼

tiþ1−ti
� �

Ri−1 þ ti−ti−1ð ÞRiþ1

tiþ1−ti−1
ðA� 5Þ

Substituting Ri as in Eq. (A-3) and using Eq. (A-2) above
(neglecting δ), leads to:

σ2 ¼
∑N−1

i¼2
1

tiþ1−ti−1ð Þ3 tiþ1−ti
� �

εi−1 þ tiþ1−ti−1
� �

εi þ ti−ti−1ð Þεiþ1
� �2

∑N−1
i¼2

1
tiþ1−ti−1

ðA� 6Þ

or, with the notation xi ¼ tiþ1−ti
tiþ1−ti−1

σ2 ¼
∑N−1

i¼2
1

tiþ1−ti−1ð Þ xi εi−1 þ εi þ 1−xið Þεiþ1
� �2
∑N−1

i¼2
1

tiþ1−ti−1

ðA� 7Þ

We now use the assumptions that the εi are uncorrelated with
a zero mean. The implication is that the sums ∑N−1

i¼2
1

tiþ1−ti−1ð Þ
εi−1εi; ∑N−1

i¼2
1

tiþ1−ti−1ð Þ εiεiþ1; ∑N−1
i¼2

1
tiþ1−ti−1ð Þ εi−1εiþ1 can be neglected.

Then:

σ2 ¼
∑N−1

i¼2
1

tiþ1−ti−1
� � x2i ε2i−1 þ ε2i þ 1−xið Þ2ε2iþ1

� �

∑N−1
i¼2

1
tiþ1−ti−1

≈ x2 þ 1þ 1−x2
� �

ε2

¼ 2 1−x þ x2
� �

ε2 ðA� 8Þ

If the observations are evenly distributed in time, then x=0.5 so
that σ2≈3=2 ε2 . For uneven distributions, x can take random values
between 0 and 1, so that σ2≈5=3 ε2 .

These equations demonstrate that, as indicated in the main body
of the manuscript, σ2 provides an objective and quantitative evalua-
tion of the statistical difference between the “truth” R(t) and the indi-
vidual Ri with some clearly stated assumptions.
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