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Abstract
This work investigates variations in satellite-measured greenness of Amazon forests using ten
years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced
vegetation index (EVI) data. Corruption of optical remote sensing data with clouds and
aerosols is prevalent in this region; filtering corrupted data causes spatial sampling constraints,
as well as reducing the record length, which introduces large biases in estimates of greenness
anomalies. The EVI data, analyzed in multiple ways and taking into account EVI accuracy,
consistently show a pattern of negligible changes in the greenness levels of forests both in the
area affected by drought in 2005 and outside it. Small random patches of anomalous greening
and browning—especially prominent in 2009—appear in all ten years, irrespective of
contemporaneous variations in precipitation, but with no persistence over time. The fact that
over 90% of the EVI anomalies are insignificantly small—within the envelope of error (95%
confidence interval) in EVI—warrants cautious interpretation of these results: there were no
changes in the greenness of these forests, or if there were changes, the EVI data failed to
capture these either because the constituent reflectances were saturated or the moderate
resolution precluded viewing small-scale variations. This suggests a need for more accurate
and spatially resolved synoptic views from satellite data and corroborating comprehensive
ground sampling to understand the greenness dynamics of these forests.

Keywords: Amazon, greenness, remote sensing

1. Introduction

Quantifying variations in the greenness of Amazonian forests
and understanding the driving factors behind these variations
is an important research theme considering the role these
forests play in the global carbon (Malhi and Grace 2000)

6 Address for correspondence: Atmospheric and Environmental Research
Incorporated, 131 Hartwell Avenue, Lexington, MA 02421, USA.

and hydrological cycles (e.g., McGuffie et al 1995, Werth
and Avissar 2002). This remains a challenging task for
investigation through ground sampling, given the sheer
expanse of these forests, 5.3 million km2, with most of it
presently inaccessible (Aragao et al 2009), and enormous
heterogeneity and rich biodiversity (e.g., Phillips et al 1994,
ter Steege et al 2006). Satellite greenness data—NASA
moderate resolution imaging spectroradiometer (MODIS)
enhanced vegetation index (EVI) data (Justice et al 1998,
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Vermote et al 2002, Huete et al 2002)—provide repetitive
synoptic sampling of the entire Amazon basin, albeit at a
moderate resolution. Algorithm refinements through feedback
from concerted validation efforts and multiple reprocessings
of the growing MODIS data archive have led to progressively
improved research-quality products ideally suited for studies
of greenness dynamics in complex ecosystems such as the
Amazon (e.g., Huete et al 2006, Xiao et al 2006, Myneni
et al 2007, Samanta et al 2011b, 2012, Xu et al 2011). A
particularly appealing aspect of these data is their record
length—presently over a decade. Therefore, these data are
potentially well suited to research variations in greenness
levels across this wide basin.

Investigation of greenness dynamics with satellite
measurements is fraught with several pitfalls, the major
being corruption from atmospheric effects leading to artificial
changes in vegetation indices that are unrelated to any
real changes on the ground. This is especially true of the
Amazon, where clouds and aerosols from biomass burning
are seemingly ubiquitous. For example, Saleska et al (2007)
observed a greening anomaly in response to the 2005 drought,
but this was shown to be an artifact of atmospheric corruption
of EVI and not observed in a later version of the same data
(Samanta et al 2010, 2011a). Similarly, corruption of satellite
data was also recently found to be a key issue in the lack
of reliability of vegetation growth trends reported by Zhao
and Running (2010), especially in the Amazon (Samanta
et al 2011b). Thus, the motivation for this work derives
from the recurring theme of data contamination impacts
on interpretation of variations in vegetation activity in the
Amazon, which has not only been reported for singular events
such as the 2005 drought (Samanta et al 2010, 2011a),
but also, more recently, for vegetation growth trends (e.g.,
Samanta et al 2011b). Bearing this in mind and with a view
to informing future studies, we have presented a number of
new analyses and results. First, estimates of biases resulting
from screening corrupted data from analysis. Second,
analysis of characteristics of greenness dynamics, taking
into consideration the statistical distributions of measurement
errors of the greenness data. Third, further investigation of
relationship between greenness and precipitation anomalies.
Fourth, investigation of persistence of greenness changes over
time.

2. Data

2.1. Vegetation greenness data

Enhanced vegetation index (EVI) is a satellite data based
measurement of vegetation greenness produced by NASA
using blue (459–479 nanometers (nm)), red (620–670 nm)
and near-infrared (842–876 nm) band surface reflectance data
from the MODIS instrument aboard the Terra and Aqua
satellites (WWW1 2011, Huete et al 2002). EVI generally
correlates well with ground measurements of photosynthesis
(e.g., Rahman et al 2005, Sims 2008) and is found to be
especially useful in high biomass tropical broadleaf forests
like the Amazon (Huete et al 2006). We used versions—also

called Collections—4 and 5 of Terra MODIS EVI data.
Collection 5 (C5) is the latest version, superseding all previous
versions.

The dataset ‘Vegetation Indices 16-Day L3 Global
1 km’—MOD13A2—contains EVI at 1 × 1 km2 spatial
resolution and 16-day frequency. This 16-day frequency arises
from compositing, i.e. assigning one best-quality EVI value
to represent a 16-day period. This dataset is available in tiles
(10◦× 10◦at the equator) of sinusoidal projection—16 such
tiles cover the Amazon region (approximately 10◦N–20◦S
and 80◦W–45◦W). The data were obtained from the NASA
Land Processes Data Active Archive Center (LP DAAC)
(WWW1 2011) for the period February 2000–December
2009. A previous version of EVI data, Collection 4 (C4),
was also used in this study, although this dataset is now
decommissioned and deleted from the NASA LPDAAC
archives (the July to September C4 Terra MODIS EVI data,
but not the corresponding quality flags, for the years 2000–5,
were obtained from Saleska et al (2007)). We have also used
two other datasets. First, we used the dataset ‘Vegetation
Indices Monthly L3 Global 0.05◦ CMG’—MOD13C2—
which contains EVI at 0.05◦×0.05◦ spatial resolution and
monthly frequency. Second, we used the dataset ‘Vegetation
Indices 16-Day L3 Global 0.05◦ CMG’—MOD13C1—which
contains EVI at 0.05◦×0.05◦ spatial resolution and 16-day
frequency. These are ‘cloud-free spatial composites’ of
MOD13A2 (WWW2 2011). These were obtained from the
NASA LP DAAC (WWW2 2011) for the period February
2000–December 2009. We also were able to obtain C4
MOD13C1 data with quality flags for 2004–6 (WWW2 2011).

2.2. Land cover data

Land cover information was obtained from the ‘MODIS
Terra Land Cover Type Yearly L3 Global 1 km SIN Grid’
product—MOD12Q1. This is the official NASA C5 land
cover data set (WWW3 2011, Friedl et al 2010). It consists
of five land cover classification schemes at 0.5 × 0.5 km2

spatial resolution. The International Geosphere Biosphere
Programme (IGBP) land cover classification scheme was used
to identify forest pixels in the Amazon region.

2.3. Precipitation data

The dataset ‘Tropical Rainfall Measuring Mission (TRMM)
and Other Data’—3B43—consists of monthly precipitation
rate (mm h−1) at 0.25◦ × 0.25◦ spatial resolution (WWW4
2011). This dataset covers the region 50◦N–50◦S and
180◦W–180◦E. We used the latest version (version6)
spanning July to September of years 1998–2009 in this study.

3. Methods

3.1. Determination of EVI validity

The presence of clouds (adjacent clouds, mixed clouds and
shadows) ‘obscures’ the surface in a radiometric sense, thus
corrupting inferred EVI values. In addition, two types of

2



Environ. Res. Lett. 7 (2012) 024018 A Samanta et al

aerosol loadings typically corrupt EVI—climatology and high
aerosols. Use of aerosol climatology indicates that the actual
aerosol content is unknown, most likely due to the presence
of clouds, and aerosol correction was performed using
historical or climatological aerosol optical thickness (AOT)
data (Vermote and Vermuelen 1999). Moreover, atmospheric
correction methods are ineffective for high aerosol loadings
(AOT > 0.5) (WWW5 2011, WWW6 2011, Didan and Huete
2006), especially in the shorter red and blue spectral bands
(Vermote and Kotchenova 2008) used by EVI (Huete et al
2002).

Each 1×1 km2 16-day composite EVI value is considered
valid when (a) EVI data is produced—‘MODLAND QA’
equals 0 (good quality) or 1 (check other QA), (b) VI
usefulness is between 0 and 11, (c) clouds are absent—
‘adjacent cloud detected’ (0), ‘mixed clouds’ (0) and ‘possible
shadow’ (0), and (d) aerosol content is low or average—
‘aerosol quantity’ (1 or 2). Note that ‘MODLAND QA’
checks whether EVI is produced or not, and if produced, its
quality is good or whether other quality flags should also
be checked. Besides, VI usefulness indices between 0 to 11
essentially include all EVI data. Thus, these two conditions
serve as additional checks.

Each 0.05◦× 0.05◦ 16-day/monthly EVI pixel is consid-
ered valid when (a) EVI data is produced—‘MODLAND QA’
equals 0 (good quality) or 1 (check other QA), (b) VI useful-
ness is between 0 and 11, (c) clouds are absent—‘adjacent
cloud detected’ (0) and ‘mixed clouds’ (0), (d) aerosol
content is low or average—‘aerosol quantity’ (1 or 2),
and (e) consistency with finer resolution EVI—‘geospatial
quality’ (≥50%). Here, the utility of ‘MODLAND QA’ and
VI usefulness flags is same as in the case of 1 × 1 km2

EVI validity. Besides, the ‘geospatial quality’ flag provides
information on the fraction of 1 × 1 km2 EVI data that
contributed to each 0.05◦× 0.05◦ EVI pixel.

3.2. Evaluation of EVI standardized anomalies

Standardized anomalies (anomaly divided by the standard
deviation) are calculated pixel-by-pixel for the dry season in
central and southern Amazon, July to September—the third
quarter of a year. These anomalies may be calculated using
two different methods.

3.2.1. Method of equal record lengths. The dry season in
a calendar year spans six 16-day EVI composites—numbered
177 through 257. Of these, two consecutive composites cover
each month—July (177 and 193), August (209 and 225) and
September (241 and 257). For each month, if both the 16-day
EVI values are valid, the average of the two is the monthly
value. If only one of the two is a valid EVI value, it represents
the monthly value. If none are valid EVI values, the monthly
mean does not exist and the pixel is not used in further
calculations. For each year, if all three EVI monthly values
exist, these are averaged to obtain the third-quarter mean, else
the quarterly mean does not exist. If the quarterly mean EVI
exists in all years of a reference period, the mean (EVIJAS

mean,ref)

and standard deviation (σ JAS
ref ) are evaluated. The reference

period is generally 2000–6 (excluding 2005) for C5 EVI and
2000–4 for C4 EVI, unless stated otherwise. Finally, if the
2005 quarterly mean EVI exists, the standardized anomaly is
calculated as:

EVIJAS
stn anom,2005 =

EVIJAS
mean,2005 − EVIJAS

mean,ref

σ JAS
ref

. (1)

This method minimizes biases in the evaluation of
standardized anomalies because it is based on equal record
lengths for all pixels. However, this method increases the
time step from 16 days to a month and pixels with
atmosphere-corrupted data are dropped from all further
analysis. This method was used in Samanta et al (2010).

3.2.2. Method of unequal record lengths. For each year,
the quarterly mean EVI is calculated as the average of all
available 16-day composite EVI values, after screening for
clouds and aerosols. Following this, EVIJAS

mean,ref and of the
reference period are evaluated from all available dry season
mean EVI values. The 2005 EVI standardized anomalies are
then calculated using the expression in (1). The lengths of
EVI data record used to evaluate these quantities vary from
pixel-to-pixel, because this method does not require that all
months have a valid EVI value, which introduces biases in the
anomaly estimates (cf the appendix). This method was used
in Saleska et al (2007).

3.3. Evaluation of precipitation (0.25◦× 0.25◦) standardized
anomaly

A monthly precipitation value is considered ‘valid’ if it is not
equal to −9999. If all the three monthly precipitation values
are valid, the total of the three represents the quarterly total.
Else, the pixel is tagged and not used in further calculations.
The rest of the processing is similar to that described
in section 3.2.1. The reference period for precipitation
is generally 1998–2006 (excluding 2005), unless stated
otherwise. Pixels with precipitation standardized anomalies
less than −1 std. dev. are classified as drought-stricken
(Saleska et al 2007, Samanta et al 2010).

4. Results and discussion

4.1. Greenness dynamics during the 2005 drought

Atmosphere-corrupted EVI data should be filtered from
analysis to reliably study vegetation greenness dynamics due
to two reasons—first, EVI changes significantly during the
course of a given year (figure 1(a)). Second, contamination
of data with clouds and aerosols is prevalent in this region
(Samanta et al 2010, 2011a)—even in the dry season
60–66% of these data are corrupted with atmospheric effects
(figure 1(b)). The filtering can be done either with the
quality flags or the VI Usefulness Indices accompanying
the EVI data. This not only reduces the number of EVI
data available for analysis, but also poses a problem when
evaluating EVI statistics such as temporal means, standard
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Figure 1. (a) Annual course of monthly C5 EVI (0.25◦× 0.25◦), averaged over Amazon forests in the region covering 0◦–23.5◦ S and
80◦–45◦W, for the period 2000–6. EVI data are screened for clouds (adjacent and mixed clouds and cloud shadows) and aerosols (high and
climatology aerosols). (b) Spatial patterns of the probability (%) of EVI (1× 1 km2) corruption during July to September (JAS) quarter. A
16-day composite C5 EVI value is valid when its quality flags indicate absence of clouds (adjacent clouds, mixed clouds and possible
shadows) and aerosols (climatology and high). If at least one 16-day composite is valid in a month, then the monthly EVI is valid. Similarly,
if all three months in a quarter have valid EVI, then the quarterly EVI is valid and the 1× 1 km2 pixel is given a validity score of 1. Thus,
for each quarter during the 2000–6 time period, a pixel can have a maximum cumulative validity score of 7. Then, the probability (%) of
validity of a pixel is calculated as (100(cumulative validity)/(maximum cumulative validity)). Finally, the probability (%) of corruption of
the pixel is calculated as (100-probability of validity).

deviations and anomalies. Consider, for example, the July
to September quarterly standardized anomaly (a) in year
2005. It is evaluated as (x − m)/s, where x is the quarterly
mean in year 2005, m is the climatological quarterly mean
and s is the corresponding quarterly standard deviation.
The unbiased evaluation of these quantities requires the
complete set of 16-day EVI composite data over a long
enough time period for each pixel in the study area. Filtering
atmosphere-corrupted EVI data makes this set incomplete.
Thus, the EVI record lengths will vary from pixel-to-pixel
across the study region. The evaluation of x, m, s and
a under these circumstances (cf section 3.2.2) introduces
large biases for two reasons—large increase in EVI during
the July to September quarter (figure 1(a)), (Huete et al
2006, Samanta et al 2012) and short record lengths (less
than 10 yr). These biases are quantified in appendix—they
can be minimized by requiring that every month has at
least one uncorrupted EVI value (cf section 3.2.1). Even
then, a large number of pixels will not have the requisite
record length and should therefore be dropped from analysis.
We used both these methods—unequal record lengths at
16-day scale and equal record lengths at monthly scale—to
characterize the spatial patterns of greenness dynamics in the
drought-affected region of the Amazon. To filter the corrupted
data, we used Collection 5 (C5) data quality filters for both
C4 and C5 EVI data (cf section 3.2). This facilitated a more
accurate assessment of atmosphere-corruption effects across
Collections by not introducing errors related to changes in
data filters between collections.

4.1.1. Method of unequal record lengths. Changes in
EVI spatial patterns resulting from successive filtering of
cloud- and aerosol-contaminated data with quality flags are
shown in figure 2, and numerically tabulated in table 1.
Pixels with EVI standardized anomalies greater than +1
are categorized as greening, less than −1 as browning, and
between −1 and +1 as displaying no changes (Saleska
et al 2007, Samanta et al 2010). The unfiltered C4 and
C5 patterns are very different (figures 2(a) and (b))—three
prominent patches of greening seen in C4, of which one
is very large (approximately 300 000 km2), are missing in
C5. The extent of greening decreases (11%) and browning
increases (8%) in C5 compared to C4. The dominant pattern
in both EVI collections is one of no EVI changes (51–54%).
Screening for clouds and their shadows minimally changes the
respective patterns in both collections (less than 7%) (figures
2(c) and (d)). However, screening for high aerosol amount
significantly reduces the greening (by 34%) and enhances
the browning extents in C4 (by 55%), but not in C5 (figures
2(e) and (f)). Overall, filtering of atmosphere-corrupted EVI
data reduces the anomalous greening proportion by 36% and
enhances the browning proportion by 65% in C4. The final
patterns, after both cloud and aerosol screening, are similar
across collections—the dominant pattern, spanning 57% of
the drought-affected area, remains one of no EVI changes,
the rest exhibiting anomalous greening and browning patterns
(25% and 18%) (table 1).

Another way to filter pixels for dataquality is by using
VI usefulness indices. Index values 4 and above generally
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Figure 2. Spatial patterns of EVI standardized anomalies during the 2005 dry season (July–September) at 1× 1 km2 spatial resolution.
Panels (a) and (b) show patterns when no data are screened. Panels (c) and (d) show patterns when cloud-contaminated (adjacent cloud,
mixed clouds and cloud shadows) data are screened. Panels (e) and (f) show patterns when cloud- and high aerosol-contaminated data are
screened. Panels (g) and (h) show patterns when cloud- high aerosol- and climatology aerosol-contaminated pixels are screened. C4 and C5
refer to collection 4 and 5 EVI data sets. For consistency between C4 and C5 EVI, anomalies are calculated relative to 2000–4, using the
methodology described in section 3.2.2. The ellipse in the panels shows the drought-affected region.
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Table 1. Effect of data filtering on collections 4 (C4) and 5 (C5) EVI (1× 1 km2) standardized anomalies during the dry season, July to
September, of year 2005. Pixels with EVI standardized anomalies in the range −1 to +1 standard deviation (std. dev.) are classified as
showing no changes. Pixels with EVI standardized anomalies less than −1 std. dev. are classified as browning. Pixels with EVI standardized
anomalies greater than +1 std. dev. are classified as greening. Shown here are changes in fractions (%) of greening (1 greening), browning
(1 browning) and ‘no-change’ (1 no change) in drought-stricken forests, south of the equator, when EVI data are screened using quality
flags pertaining to clouds and aerosols (figure 2) as well as VI usefulness, relative to no data screening.

1 greening (%) 1 browning (%) 1 no change (%)

Screening type Cumulative screening C4 C5 C4 C5 C4 C5

Quality flags No screening 0 0 0 0 0 0
Adjacent clouds −4.18 −2.12 3.16 0.59 2.41 0.81
Mixed clouds −5.44 −3.47 5.21 1.35 2.92 1.23
Cloud shadows −6.23 −7.67 3.10 3.46 3.62 2.34
High aerosols −33.56 −5.41 55.25 −2.22 12.63 2.73
Climatology aerosols −35.97 −9.61 65.12 0.43 11.57 2.62

VI usefulness index VI usefulness >4 screened −5.63 −6.18 4.65 2.54 3.10 2.10
VI usefulness >3 screened −34.22 −6.43 59.25 −1.20 12.24 2.82
VI usefulness >2 screened −40.37 −18.45 62.42 −0.11 14.22 6.67

correspond to pixels with atmosphere-corrupted EVI values
and conversely, indices three and below correspond to
uncorrupted EVI values. The changes in EVI spatial patterns
resulting from screening with these indices are similar to those
with quality flags (table 1). Inclusion of atmosphere-corrupted
EVI values results in very different patterns between C4 and
C5 (figure not shown for brevity)—again, three prominent
C4 greening patches are missing in C5. The greening
proportion decreases (by 28.77%) and browning proportion
increases (by 68.53%) in C5 compared to C4, but the
dominant proportion of pixels in both collections still
shows no EVI changes (53–55%). Screening for clouds and
aerosols, that is, using indices less than 4, results in similar
patterns across the two collections (figure not shown for
brevity)—again, the dominant pattern is one of no EVI
changes (56–57%). This analysis is consistent with screening
by quality flags (figure 2). Together these results indicate
that atmosphere-corrupted EVI values are comparable to
uncorrupted values in C5, but are large over-estimates in C4.
Therefore, the C4 patterns, in the absence of any data quality
filtering, or only cloud filtering, are artifacts of atmospheric
effects on EVI. Note that atmosphere-corrupted pixels may
be inadvertently included in the analysis either by ignoring
the quality flags or if the quality flags are faulty, that is, the
atmosphere-corrupted pixels are tagged as uncorrupted. The
fact that the results published in Saleska et al (2007) match our
C4 patterns without any data quality filtering (figure 2(a)) and
with cloud filtering only (figure 2(c)) indicates (inadvertent)
inclusion of aerosol-corrupted EVI data in their analysis.
Moreover, the results presented in this section should be
interpreted with caution for two reasons—first, the evaluation
of standardized anomalies without regard to the availability
of the full complement of EVI data introduces biases
depending on the remaining record lengths (cf appendix),
and second, the use of ±1 standardized deviation alone
to categorize greenness dynamics does not account for the
statistical significance of observed EVI changes, as discussed
in section 4.1.2.

4.1.2. Method of equal record lengths. The quarterly
standardized anomalies are evaluated only for pixels without
atmosphere-corrupted monthly EVI data, as in Samanta et al
(2010) (cf section 3.2.1). Of the nearly 2.19 million km2

of intact Amazon forests in the drought-stricken region,
12% (0.26 million km2) show anomalous greening (EVI
std. anomalies greater than +1), 6% (0.13 million km2)
show browning (EVI std. anomalies less than −1) and
22% (0.48 million km2) show no EVI changes (EVI std.
anomalies between −1 and +1)—the rest, 60% (1.32 million
km2), have atmosphere-corrupted EVI data, and are therefore
excluded from further analysis (figure 3(a)). It is prudent to
explore whether the area with uncorrupted EVI data (40%) is
representative of the entire drought-affected region. If so, the
EVI dynamics may be expressed relative to the area of valid
data, in which case, the greening and browning proportions
increase to 30% and 15%, respectively. The dominant pattern,
nevertheless, remains one of no greenness changes (55%).
We argue that the area sampled is not representative of the
larger drought-affected region, that is, the sample of pixels
with uncorrupted EVI data is not representative of the total
population of pixels in the drought region, for the following
reasons.

Atmosphere-corruption of EVI data due to clouds and
aerosols is highly selective, both spatially and temporally
(cf figure 1(b)). The broad precipitation gradient in the
Amazon, and its seasonal variations, from the less humid
southeast to the more humid northwest (Sombroek 2001)
implies a similar gradient in cloud persistence—therefore,
the probability of obtaining cloud-free satellite data in the
more humid forests is selectively lower. Aerosols from
biomass burning are predominant in the southeastern fringes
in the dry season—for example, figure 3 in Aragao et al
(2007)—therefore, the probability of EVI corruption from
aerosols is selectively higher in these areas during the dry
season, and nearly non-existent in other seasons (April to
June, for example). Thus, forests to the northwest and
southeast will be under-sampled and forests to the center
will be over-sampled—figure 1(b) (similar patterns for other
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Figure 3. (a) Spatial patterns of collection 5 (C5) EVI standardized anomalies during the 2005 dry season (July to September, JAS) at
1× 1 km2 spatial resolution. Cloud-, shadow-, climatology aerosol- and high aerosol-contaminated data are screened from analysis.
Anomalies are calculated relative to 2000–6, but excluding 2005. (b) Frequency distribution (%) of 2005 dry season EVI standardized
anomalies, expressed as absolute (EVI) difference, and dry season mean EVI averaged over 2000–6 (excluding 2005) for forests displaying
greening (JAS EVI standardized anomaly > 1 std. dev.) and browning (JAS EVI standardized anomaly < −1 std. dev.). (c) Frequency
distribution (%) of dry season EVI standardized anomalies for drought-impacted and non-impacted forests south of the equator exhibiting
greening and browning.

quarters not shown for brevity). Given the rich diversity of
species and their varied responses to variations in climate, this
biased sampling argues against extrapolating the uncorrupted
data available for the smaller area to the much larger
drought-affected region.

The area with uncorrupted EVI data increases to 65–75%
of the drought-affected region, if the analysis is performed
on monthly, rather than quarterly, standardized anomalies.
Nevertheless, a predominant proportion (60–65%) still shows
no anomalous EVI changes in each of the three months
of the dry season, consistent with the analysis on quarterly
standardized anomalies.

In fact, the use of a threshold value of standardized
anomaly (±1 std. dev.) alone to categorize greenness
dynamics, without an account of the magnitude (absolute
value) of EVI changes, relative to EVI accuracy, is misleading,
for it does indicate whether the observed anomalies are
real or not. For instance, the 60% of all EVI anomalies

that are within 0.02 EVI in magnitude may be considered
insignificant, because the 1 std. dev. envelope of error in
EVI is ±(0.02 + 2% of EVI) (Vermote and Kotchenova
2008). Similarly, 97% of the EVI anomalies in greening and
94% in browning categories fall within the 2 std. dev. (95%
confidence interval) envelope of error in EVI (±0.06, which
is about 12% of the climatological dry season average EVI
value of 0.51) (figure 3(b)). Therefore, over 90% of the EVI
anomalies are insignificantly small i.e. within 2 std. dev.
representing the 95% confidence interval of error in EVI,
which is about ±0.06 or 12% of the dry season average EVI
value of 0.51. Thus, using a threshold of 12% EVI change, in
addition to 1 std. dev., to categorize EVI dynamics reduces
the anomalous greening and browning proportions to 0.6%
and 0.5%, respectively. This further re-enforces the dominant
greenness dynamic as one of no changes during the dry season
drought of 2005. The fact that a majority of the measured
EVI anomalies are insignificantly small could suggest either
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Table 2. Changes in collection 5 (C5) EVI (1× 1 km2) and precipitation (0.25◦×0.25◦) during dry seasons (July to September, JAS) of
years 2000–9. Only forest pixels, in the region 0◦ to 20◦S and 45◦W to 80◦W, located in areas with JAS 2005 precipitation anomaly less
than −1 std. dev. (relative to the mean for the 1998–2006 period, excluding 2005) are considered. The EVI standardized anomalies are
relative to the mean for the 2000–9 period. The precipitation standardized anomalies are relative to the mean for the 1998–2009 period. In
both cases, year 2005 data are excluded. Pixels with EVI standardized anomalies in the range −1 to +1 std. dev. are classified as showing
no changes. Pixels with EVI standardized anomalies less than −1 std. dev. are classified as browning. Pixels with EVI standardized
anomalies greater than +1 std. dev. are classified as greening. Pixels with precipitation standardized anomalies less than −1 std. dev. are
categorized as drought-stricken or with precipitation deficit. Cloud-, shadow-, climatology aerosol- and high aerosol-contaminated data are
excluded from analysis.

Year
Precipitation
deficit area (%)

Greening (%)
(magnitude (std))

Browning (%)
(magnitude (std))

No change
(%)

Valid pixels
(%)

2000 1.27 5.72 (1.38) 4.63 (−1.41) 23.95 34.32
2001 5.65 5.64 (1.38) 5.72 (−1.43) 24.03 34.32
2002 9.20 5.59 (1.39) 4.71 (−1.42) 24.01 34.32
2003 5.23 8.74 (1.44) 3.20 (−1.41) 22.38 34.32
2004 5.06 8.08 (1.47) 5.53 (−1.49) 20.69 34.32
2005 86.25 11.19 (1.84) 3.16 (−1.67) 18.59 32.95
2006 26.15 5.42 (1.35) 2.83 (−1.36) 26.06 34.32
2007 40.83 5.20 (1.38) 5.04 (−1.4) 24.07 34.32
2008 18.36 3.29 (1.34) 4.73 (−1.37) 26.29 34.32
2009 16.02 0.79 (1.34) 14.99 (−1.50) 18.53 34.32

reflectance saturation in dense Amazon canopies or no real
changes in the greenness of these forests.

It is also of interest to contrast the greenness dynamics
of forests within the drought-affected region to forests outside
this region, but south of the equator. Of the nearly 2.44 million
km2 of such forests, about 5% (0.12 million km2) show
anomalous greening, 5% (0.12 million km2) show browning
and 14% (0.34 million km2) show no EVI changes—the rest,
76% (1.86 million km2), have atmosphere-corrupted data and
are therefore excluded from analysis. Nearly 93% of these
forests with uncorrupted data have EVI anomalies that fall
within the 2 std. dev. (95% confidence interval) envelope of
error in EVI. Thus, as before, using a threshold of 12% EVI
change, in addition to 1 std. dev., to categorize greenness
dynamics, reduces the fractions of greening and browning to
0.5% and 1.7%, respectively. Therefore, as with forests in the
drought-affected region, the dominant greenness dynamic in
forests outside is also one of no EVI changes. This conclusion
is further re-enforced by nearly identical distributions of
standardized anomalies between these two groups of forests
(figure 3(c)). The peaks of these distributions differ trivially.
These small differences actually show a slightly higher
frequency of positive EVI anomalies amongst forests outside
the drought-affected region (10%) than those within (8.5%),
and a slightly higher frequency of negative EVI anomalies
amongst forests within (10%) than outside (9%), which does
not support the idea of a drought-induced greening response
from these forests (Saleska et al 2007). The recurring theme
from multiple analyses presented in this section is one of no
widespread changes in the greenness of Amazonian forests
south of the equator during the dry season of 2005.

4.2. Greenness dynamics during the 2000–9 decade

The proportion of the 2005 drought area with corrupted
EVI data remains remarkably similar in all ten years of the
2000–9 period, about 66% (table 2)—this exemplifies the

prevalence of clouds and aerosols selectively in some parts
of the Amazon, year after year. Thus, the time series of
uncorrupted EVI data required for unbiased estimation of
anomalies is not available for pixels in these areas, even at the
monthly scale (cf section 3.2.1). A predominant proportion
of the forests, for which the complete set of uncorrupted
data records is available, 56–77%, shows no discernible EVI
changes. Comparable, albeit small, proportions of anomalous
greening and browning are observed in six of the ten years,
irrespective of the deficit in precipitation (years 2000–2,
2006–8). A slightly higher proportion of anomalous greening,
relative to browning, is observed in drought (2005) as
well as non-drought years (2003 and 2004). In 7 of the
9 non-drought years, the distributions of EVI anomalies
display negative skew, similar to the distribution in the
drought year 2005 (figure not shown for brevity)—patches
of anomalous greening and browning, independent of the
extent of precipitation deficit, are seen in many of these
years as well. In contrast, the distribution of precipitation
anomalies in 2005 exhibits positive skew (figure not shown for
brevity)—nearly all the anomalies are negative. Interestingly,
a significant browning anomaly is observed in 2009 (figure 4),
but there was no correspondingly severe precipitation deficit
(table 2). The quality flags also do not indicate anomalously
enhanced atmospheric corruption in 2009. An inspection of
the 2009 anomaly magnitudes reveals that nearly all the
negative EVI anomalies are smaller than |0.04| in magnitude
(figure 4), that is, less than the 2 std. dev. error bar of
EVI (∼|0.06|), and therefore are statistically insignificant.
Overall, these results fail to demonstrate a linkage between
contemporaneous variations in dry season precipitation and
greenness dynamics in this region. It is possible that these
forests remain hydrated during the short dry season via
their deep root systems (Wright et al 1996, Nepstad et al
1994) and/or through hydraulic redistribution (da Rocha et al
2004, Oliveira et al 2005). An extended period of drought
has been reported to severely impact the forests and result
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Figure 4. Spatial patterns of EVI anomalies during the 2009 dry
season (July–September) at 1× 1 km2 spatial resolution. Cloud-,
shadow-, climatology aerosol- and high aerosol-contaminated data
are screened from analysis. Anomalies are calculated relative to
2000–8 using the methodology in section 3.2.2, and expressed as
EVI differences.

in mortality of large trees (Nepstad et al 2007). There
are also reports of enhanced tree mortality and declines in
tree growth in response to the 2005 drought (Phillips et al
2009)—possibly the moderate resolution (1×1 km2) MODIS
EVI data analyzed in this study fail to capture these changes,
which were observed in several plots across the Amazon. In
addition, the interpretation of greenness dynamics is further
complicated by both man-made interferences such as logging
(Koltunov et al 2009) and natural disturbances such as severe
storms (Negron-Juárez et al 2010).

The gradual increase in EVI during the dry season
(figure 1(a)) has been interpreted as indicative of leafing and
enhanced photosynthetic activity (Huete et al 2006). Indeed,
moist tropical forests are known to flush new leaves during
the light rich dry season (van Schaik et al 1993, Wright
and Vanschaik 1994, Myneni et al 2007). Leaf demography
studies in tropical forests indicate leaf longevities of two to
four years (Reich et al 2004). A recent study (Brando et al
2010) suggests that inter-annual variations in basin-wide (dry
season) EVI are related to leaf flushing. Therefore, if the most
extensive greening anomaly, seen in the drought year 2005
(0.26 million km2), is suggestive of enhanced leaf area, and
not an artifact, this anomaly should persist in to the following
year(s)—discounting for the moment that the magnitudes of
EVI anomalies in this region are statistically insignificant. Our
analysis indicates no persistence of this greening anomaly,
even in to the next quarter—random patches, some large and
many small, of anomalous browning and greening appear in
each quarter, with no distinct pattern of persistence (results
not shown for brevity). A dominant proportion (50–60%) of
the 2005 greening pixels show no anomalous EVI changes

Figure 5. Fractions (%) of forests in the drought-affected area
showing greening during the July to September quarter of 2005 that
display greening, browning and no change from October–December
(OND) quarter of 2005 through OND quarter of 2007. Pixels with
EVI standardized anomalies in the range −1 to +1 std. dev. are
classified as showing no changes. Pixels with EVI standardized
anomalies less than −1 std. dev. are classified as browning. Pixels
with EVI standardized anomalies greater than +1 std. dev. are
classified as greening. Cloud, shadow, climatology aerosol and high
aerosol-contaminated data are screened.

and comparable proportions, about 20%, show greening and
browning in the following two years (figure 5)—thus, on an
average, only 20% of the forests that displayed greening in
2005 maintained their enhanced greenness level through the
following years. These results do not indicate enhanced leaf
production as the cause of anomalous dry season greening in
2005.

5. Conclusions

The presence atmospheric contamination in satellite-derived
greenness data over Amazon forests poses both temporal
and spatial sampling issues. Removal of such data from
the time series of observations can introduce large biases
in the estimated means, standard deviations and anomalies.
However, if such pixels, which lack the full complement of
data, are dropped from analysis, the data available for analysis
may be considerably reduced. For example, about 60–66% of
the area affected by drought in 2005 lacks uncorrupted EVI
data to unbiasedly estimate quarterly standardized anomalies.
Given the selective prevalence of clouds and aerosols, the
uncorrupted data are not representative of the larger drought
area, and therefore, greenness dynamics inferred from the
available sample cannot be extrapolated to the larger area.

A decade’s worth of Terra MODIS collection 5 EVI data
and six years of a previous version, both analyzed in multiple
ways and taking into account EVI accuracy, consistently show
a pattern of negligible changes in the greenness levels of
forests both in the area affected by drought in 2005 and
outside it. Small random patches of anomalous greening
and browning—especially prominent in 2009—appear in
all ten years, irrespective of contemporaneous variations in
precipitation, but with no persistence over time. The fact
that over 90% of the EVI anomalies are insignificantly
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small—within 2 std. dev. (95% confidence interval) envelope
of error in EVI—warrants cautious interpretation of these
results: there were no changes in the greenness of these
forests, or if there were changes, the EVI data failed to
capture these either because the constituent reflectances
were saturated or the moderate resolution precluded viewing
small-scale variations.

This analysis demonstrates that there is a need to
rigorously evaluate satellite-measured greenness data before
utilizing in interpretation of vegetation greenness changes.
In particular, atmospheric influences should be properly
screened out, and any resulting biases should be well
understood. Further, there is a need for more accurate and
spatially resolved synoptic views from satellite data and
corroborating comprehensive ground sampling to understand
the greenness dynamics of Amazon forests.
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Appendix

In this appendix, the biases in 2005 July to September
quarterly mean EVI (x), climatological quarterly mean EVI
(m), corresponding quarterly standard deviation (s) and
standardized anomaly (a), calculated as (x − m)/s are
quantified. The biases are expressed relative to true x, m, s
and a, which are evaluated from forest pixels in the 2005
drought-impacted region with complete uncorrupted 16-day
EVI records during 2000–6 (6595 pixels) in collection 5 (C5)
and 2000–5 (7385 pixels) in collection 4 (C4).

A.1. Type 1 bias

This type of bias is introduced in estimates of x, m, s and
a, when filtering of corrupted data reduces the uncorrupted
EVI record to less than three months in a quarter. One
way of demonstrating this is to bias x, while keeping m
and s unchanged, by shortening the data record as follows:
one month (September, S) and from two months (August
and September, AS) of data are dropped from analysis. The
average of the remaining data (x1) is thus a biased estimate
of x. The bias in x(1x) is x1 − x. Similarly, the standardized
anomaly (a1), calculated as (x1 − m)/s, is a biased estimate
of a, and the bias in a, denoted as 1a, is given by a1− a.

Figure A.1 shows the distributions of 1x, which are
positively skewed—average bias (1x) is negative (p <
0.0001)—across both collections. This effect is more
pronounced in AS than in A. This shows that the average
of 16-day EVI values from July (AS) or July and August
(S) alone is an under-estimate of the quarterly mean because
of EVI changes during this quarter (figure A.1(a)). This
under-estimation increases as the number of months with
missing data increases from one (S) to two (AS).

Biases in x generate biases in a, expressed as |1a|/|a|
(table A.1). The biases are significant in magnitude—about

Figure A.1. Distribution of bias (1x) in 2005 third-quarter mean
EVI (1× 1 km2–collections 4 and 5) for cases S (no data in
September) and AS (no data in August and September). The
statistical significance of the average bias (1x), in each case, is
determined using a t-test under the null hypothesis that 1x equals 0.
The number of samples (pixels) is 6595 in C5 and 7385 in C4.

Table A.1. Percentiles of the magnitude of relative bias (|1a|/|a|)
in 2005 EVI standardized anomaly (1× 1 km2—collections 4 and
5) for cases S (no data in September) and AS (no data in August and
September). The number of samples (pixels) is 6595 in C5 and 7385
in C4.

S AS

Percentiles of |1a|/|a| C4 C5 C4 C5

25th 0.35 0.34 0.96 0.78
50th 0.82 0.70 1.76 1.30
75th 1.72 1.42 3.87 2.57

three to four times—compared to the true standardized
anomalies. The biases inflate as the length of EVI record
is reduced from two (S) to one month (AS). These biases
will generate spurious greenness changes. Eliminating them
requires each month in a quarter to have at least one
uncorrupted 16-day EVI value (cf section 3.2.1); pixels not
satisfying this condition will not have third-quarter EVI mean
in a given year(s), which results in another kind of bias as
demonstrated next.

A.2. Type 2 bias

This type of bias is introduced in estimates on m and s,
and therefore a, when third-quarter mean EVI is missing in
one or more years. This is demonstrated by shortening the
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Table A.2. Percentiles of the magnitude of relative bias (|1a|/|a| )
in 2005 standardized anomaly (1× 1 km2—collections 4 and 5) for
third-quarter EVI data missing in 2004, 2003–4 and 2002–4. The
number of samples (pixels) is 6595 in C5 and 7385 in C4.

2004 2003–4 2002–4

Percentiles of
|1a|/|a| C4 C5 C4 C5 C4 C5

25th 0.12 0.09 0.20 0.19 0.34 0.56
50th 0.21 0.17 0.39 0.40 0.72 1.21
75th 0.60 0.23 1.22 0.55 2.51 1.60

reference period as follows: data are dropped from one year
(2004), two years (2003–4) and three years (2002–4). These
years are chosen for the sake of brevity—data can be dropped
from other combinations of years too. In each of the three
cases, the average of the remaining data (m1) is a biased
estimate of m, while the standard deviation (s1) is a biased
estimate of s. Thus, the standardized anomaly (a1), calculated
as (x − m1)/s1, is a biased estimate of a, and therefore, bias
in a, denoted as 1a, is given by a1− a.

Percentiles of bias in a, expressed as |1a|/|a| , are
shown in table A.2. Biases inflate steadily—about 10% to
over two and a half times (250%) relative to true estimates of
standardized anomalies—as the number of years with missing
data increases from one to three years. The increase in bias
magnitude is due primarily to relatively large changes in
estimate of quarterly standard deviation as more and more
years are dropped (results not shown for brevity). Such biases
will, therefore, generate greenness artifacts depending upon
how many years lack third-quarter mean EVI. Elimination of
these biases requires that each year of the reference period has
a valid third-quarter mean EVI (cf section 3.2.1).
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