

Projection of future climate change at the global scale

Jean-Louis Dufresne

Paris, 26 février 2013

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W}.\text{m}^{-2}$

/

All the incoming solar radiation is absorbed : $F_a = 240W.m^{-2}$

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W}.\text{m}^{-2}$

//

2/3 of incoming solar radiation is absorbed : F_a = 240W.m⁻²

Global mean surface temperature is 15°C due to greenhouse effect

Green house effect

Contribution of atmospheric gases to the natural greenhouse effect on Earth

Water vapour	60%
CO ₂	26%
$Ozone O_3$	8%
$N_2O + CH_4$	6%

Single layer green house model

Atmosphere, glass (isotherm) :
Solar (shortwave, SW) : transparent
Infrared (longwave, LW) :

 emissivity=absorptivity=ε_a
 reflectivity=0

Surface: perfectly black in both shortwave and longwave
Heat budget at the surface:

$$\sigma T_s^4 = F_s$$
$$F_s = F_0 + F_s \cdot \varepsilon_a / 2$$

Therefore:

$$\sigma T_s^4 = \frac{F_0}{1 - \varepsilon_a/2}$$
$$T_a^4 = T_s^4/2$$

Single layer green house model : surface temperature T_s depends on F_o and ε_a , and is maximum when $\varepsilon_a = 1$ This simple model is not relevant for CO₂

Saturation of absorption bands

Absorption by CO₂, for a vertical column of atmosphere

Saturation of absorption bands

Absorption by CO₂, for a vertical column of atmosphere

CO₂ increase and greenhouse effect

Atmospheric absorption as a function of CO_2 , concentration, for two H₂0 values

Have we reach a maximum greenhouse effect for CO_2 ?

CO₂ increase and greenhouse effect

Atmospheric absorption as a function of CO_2 , concentration, for two H₂0 values

Have we reach a maximum greenhouse effect for CO_2 ? NO!

CO₂ increase and greenhouse effect

Net solar radiation **F**_s

Outgoing longwave radiation **F**_{ir}

In summary, what radiation heat transfer theory tell us

For a doubling of the CO₂ concentration:

- The green house effect increases by ≈ 3.7 W.m⁻²
- The temperature increases by \approx 1.2 K, if nothing change except the temperature

From radiative transfer computation to climate modelling

For a doubling of the CO_2 concentration, the temperature increases by \approx 1.2 K, if nothing change except the temperature

But feedbacks exist:

- Snow and sea ice reflect solar radiation; if they decrease, more solar energy will be absorbed ⇒ positive feedback
- Water vapour is the main greenhouse gas; if it increases, the greenhouse effect will be enhanced ⇒ positive feedback
- Clouds reflect solar radiation and contribute to the greenhouse effect; if they change, the energy budget will be modified
 ⇒ positive or negative feedback

Need of 3D numerical climate models

$$\lambda = \frac{\partial R}{\partial T_s} = \sum_x \frac{\partial R}{\partial x} \frac{\partial x}{\partial T_s}$$

 λ can be diagnosed from model results with different technics

Climate feedback

Surface albedo feedback

Water vapor feedback

Water vapor feedback

Cloud feedback

Global Mean = 0.05 W m⁻² K⁻¹

[Zelinka et al., 2012]

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

(Dufresne & Bony, 2008)

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

(Dufresne & Bony, 2008)

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Scenario for future climate change projections

Scenario for future climate change projections

Radiative forcing of future scenarios

Contribution of individual forcings to total forcing relative to 1850

Radiative forcing of future scenarios

Contribution of individual forcings to total forcing relative to 2000

The IPSL Earth system model

IPSL-CM5 Earth System Model platform Biogeochemistry Physical models models aerosols Atmosphere (LMDZ) Land surf. (Orchidée) O₃ Coupler (OASIS) CO_2 Ocean (Nemo) Carbon & CO₂ other var. (Orchidée, Pisces) Sea-ice (LIM) Natural and anthropogenic perturbations CO, Land use Solar Volcanic Other gas irradiance emissions aerosols

(a)

(c)

The IPSL Earth system model

Natural and anthropogenic forcings Solar and volcanoes han malanger and the second 1365 €1360 A 1355 solar + volcanoe solar reference val 1350 1950 vear 1850 1900 2000 Green house gases and active gases eHFC134a-ac

CO₂ concentration

Atmospheric composition

Radiative forcings

Climate changes

Authorized CO₂ emissions

Ozone and aerosols computations

Compute ozone concentrations as a function of emissions and climate change

Global mean amount of ozone

Zonal mean of ozone

Tropospheric ozone

Amount of tropo ozone in 2000 Ozone change relative to year 2000 380 (a) RCP2.6 RCP6.0 RCP8.5 Historical RCP4.5 100 360 50 I ABurden (Tg) I ₽ 340 0 320 -50 SCOSCOM MASE A THANK COM NO ACCARE NO S SOCHEEME CICERO CONCINE MOORNCA THOCOTEM. JM-CAM ACOMPRISA CMAN EMAC -100CENCAN SUPE 2030 2100 1980 2030 2100 2030 2100 2030 2100 1850 time slice [Young et al. 2013]

Aerosols

Radiative forcing (W.m⁻²)

Radiative forcings for the historical period and the future RCP8.5 scenario (IPSL-CM5A-LR model)

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Global mean surface temperature

1850 to 2300 IPSL-CM5A-LR model

Spatial distribution of the normalized air surface temperature change $\Delta T(x,y)/\langle \Delta T \rangle$ in 2100

RCP2.6

RCP4.5

Precipitation changes

The change of the global average precipitation does not depend directly from the change of global average water vapor

(Vecchi & Soden, 2007)

Adapted from [Trenberth & Fasullo, 2012]

The change of the global average precipitation is constrained by the radiative cooling of the atmosphere

Precipitation changes

[Knutti and Sedlacek, 2012]

Precipitation changes

At the global scale:

- the contrast between wet and dry regions is expected to increase
- same with the contrast between wet and dry seasons

Regional precipitation changes using a scaling approach

[Frieler et al., 2012]

Arctic sea-ice 1970-2100

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Courtesy L. Bopp

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Medium scenario : to stabilize CO₂ concentration 550 ppm, emissions need to be strongly reduced. However, temperature will continue to increase

Courtesy L. Bopp

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Medium scenario : to stabilize CO₂ concentration 550 ppm, emissions need to be strongly reduced. However, temperature will continue to increase

Lower Scenario : to limit a 2° global warming, CO₂ concentration has to be limited to less then 450 ppm, and emissions need be to be 0 before the end of the century

Courtesy L. Bopp

Thank you for your attention