CO2 inversion as a system and its uncertainty quantification

Lin Wu

Marc Bocquet, Frédéric Chevallier, Thomas Lauvaux, Peter Rayer, Ken Davis SOFIE Spring school

May 122014

CO2 story: one carbon cycle to understand

Fusion of informtion from diverse sources

Simplest scalar case

Observation Eq.

$$
\begin{aligned}
& y=h x+\varepsilon_{o} \\
& \varepsilon_{o}=\varepsilon_{i}+\varepsilon_{m}
\end{aligned}
$$

Information 1: first guess x_{b}
Information 2: observation y

Information? Probability distribution
First guess:

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma_{b}} \exp \left[-\frac{1}{2 \sigma_{b}^{2}}\left(x-x_{b}\right)^{2}\right]
$$

Observation conditioned by emission:

$$
p(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{o}} \exp \left[-\frac{1}{2 \sigma_{o}^{2}}(y-h x)^{2}\right]
$$

Information fusion? Production rule of proba.

$$
p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y)
$$

Inference? Bayes theorem/rule.

$$
\begin{gathered}
\underbrace{p(x \mid y)}_{\text {posterior }}=\frac{\overbrace{p(x)}^{\text {prior likelihood }} \overbrace{p(y \mid x)}^{p(y)}}{\underbrace{p(y)}_{\text {evidence }}} \\
\text { posterior } \propto \text { likelihood } \times \text { prior }
\end{gathered}
$$

Simplest scalar case Bouttier \& Courtier 1999, Jacob 2007

Bayesian calculus

$$
p(x \mid y) \propto \exp \left[-\frac{1}{2}\left(\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{(y-h x)^{2}}{\sigma_{o}^{2}}\right)\right]
$$

Estimation with posterior: find a criteria (MAP)

$$
x_{a}=\arg \max p(x \mid y)
$$

Calculus: minimization of a χ^{2} cost function

$$
J(x)=\frac{1}{2}\left[\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{(y-h x)^{2}}{\sigma_{o}^{2}}\right]
$$

Estimation:

$$
\begin{aligned}
& x_{a}=x_{b}+k\left(y-h x_{b}\right) \\
& k=\sigma_{b}^{2} h\left(h^{2} \sigma_{b}^{2}+\sigma_{o}^{2}\right)^{-1}
\end{aligned}
$$

(Kalman) gain $k=\frac{\partial x_{a}}{\partial y}$

- Sensitivity of analysis to obs
- Weighted by error statistics

Simplest scalar case

Estimation: $\quad x_{a}=x_{b}+k\left(y-h x_{b}\right)$

$$
\begin{gathered}
k=\sigma_{b}^{2} h\left(h^{2} \sigma_{b}^{2}+\sigma_{o}^{2}\right)^{-1} \\
J(x)=\frac{1}{2}\left[\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{(y-h x)^{2}}{\sigma_{o}^{2}}\right]
\end{gathered}
$$

Degree of freedom for signal (DFS)

$$
\begin{array}{rll}
\sigma_{o} \ll \sigma_{b} & \frac{(y-h x)^{2}}{\sigma_{o}^{2}} \uparrow & \text { in } J(x) \\
& k \rightarrow 1 / h & x_{a} \rightarrow y / h
\end{array}
$$

y provides information on x
Degree of freedom for noise

$$
\begin{aligned}
\sigma_{o} \gg \sigma_{b} & \frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}} \uparrow \text { in } J(x) \\
& k \rightarrow 0 \quad x_{a} \rightarrow x_{b}
\end{aligned}
$$

y provides only noise

Simplest scalar case Bouttier \& Courtier 1999, Jacob 2007

Observation Eq.

$$
\begin{aligned}
& y=h x+\varepsilon_{o} \\
& \varepsilon_{o}=\varepsilon_{i}+\varepsilon_{m}
\end{aligned}
$$

Information 1: first guess x_{b}
Information 2: observation y

Posterior uncertainty

$$
\left.\begin{array}{l}
p(x \mid y) \propto \exp \left[-\frac{1}{2}\left(\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{(y-h x)^{2}}{\sigma_{o}^{2}}\right)\right] \\
=\exp \left(-\frac{1}{2} \frac{\left(x-x_{a}\right)^{2}}{\sigma_{a}^{2}}\right)
\end{array}\right] \quad \begin{aligned}
& \text { Sum of precision } \\
& \left(\sigma_{a}^{2}\right)^{-1}=\left(\sigma_{b}^{2}\right)^{-1}+h^{2}\left(\sigma_{o}^{2}\right)^{-1} \quad \text { Fisher info. matrix }
\end{aligned}
$$

Estimation:

$$
x_{a}=x_{b}+k\left(\square \overleftarrow{\left.y-h x_{b}\right)} y=h x \pm \sigma^{o}\right.
$$

$$
\begin{aligned}
& x_{a}=a x+(1-a) x_{b}+h \\
& \text { ernel: } \quad a=k h=\frac{\partial x_{a}}{\partial x}
\end{aligned}
$$

- Sensitivity of analysis to true emission
- Ideally 1

A language of inversion: Bayesian synthesis

$>$ Bayes' Theorem: uncertainty computation (information propagation) converting a prior probability to a posterior probability by assimilating Information from observations.

$$
\underbrace{p(x \mid y)}_{\text {posterior }}=\frac{\overbrace{p(x)}^{\text {prior likelihood }} \overbrace{p(y \mid x)}^{p(y)}}{\underbrace{p(y)}_{\text {evidence }}}
$$

$>y$: observation
$>x$: unknown parameter (source)
> Bayesian analysis in plain words
posterior \propto likelihood \times prior

Bayesian inversion: vectorial case of linear dynamics and Gaussian error

Inverse modelling of sources $\mathbf{X}(2 \mathrm{D}+\mathrm{T})$; Gaussian assumption + linear observation operator.
> H Jacobian matrix of the problem (observation + model):

$$
\mathbf{y}=\mathbf{H} \mathbf{x}+\varepsilon
$$

$>\mathbf{x}-\mathbf{x}_{b} \propto \mathrm{~N}(\mathbf{0}, \mathbf{B}) \quad \mathbf{x}_{b}$ prior fluxes, \mathbf{B} background error covariance matrix.
$>\varepsilon \propto \mathrm{N}(\mathbf{0}, \mathbf{R}) \quad \mathbf{R}$ observation error covariance matrix.

Bayesian inversion: vectorial case of linear dynamics and Gaussian error
> Bayes' Theorem:

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{x}) p(\mathbf{y} \mathbf{x})}{p(\mathbf{y})} \quad \mathbf{x} \in \mathfrak{R}^{n} \quad \mathbf{y} \in \mathfrak{R}^{d} \\
& p(\mathbf{x})=\frac{\exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)\right)}{2 \pi^{\frac{n}{2}} \mathbf{B}^{\frac{1}{2}}} \\
& p(\mathbf{y} \mid \mathbf{x})=p(\overbrace{\mathbf{y}-\mathbf{H} \mathbf{x}}^{\varepsilon})=\frac{\exp \left(-\frac{1}{2} \varepsilon^{T} \mathbf{R}^{-1} \varepsilon\right)}{\left.2 \pi^{\frac{d}{2}} \mathbf{R}\right|^{\frac{1}{2}}}
\end{aligned}
$$

> Prior:
> Likelihood
$>$ Evidence $p(\mathbf{y})=\int p(\mathbf{x}) p(\mathbf{y}-\mathbf{H} \mathbf{x}) d \mathbf{x}$
>Posterior:

$$
\begin{aligned}
&= \frac{\exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{b}\right)^{T}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right)^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)\right)}{2 \pi^{\frac{d}{2}} \mathbf{R}+\left.\mathbf{H B} \mathbf{H}^{T \mid}\right|^{\frac{1}{2}}} \\
& p(\mathbf{x} \mathbf{y})=\frac{\exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{a}\right)^{T} \mathbf{P}_{a}^{-1}\left(\mathbf{x}-\mathbf{x}_{a}\right)\right)}{\left.2 \pi^{\frac{n}{2}} \mathbf{P}_{a}\right|^{\frac{1}{2}}} \\
& \text { SOFIE school, 2014-05-12 }
\end{aligned}
$$

Vectorial analog of the simplest scalar case

Cost function	$J(x)=\frac{1}{2}\left[\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}}+\frac{(y-h x)^{2}}{\sigma_{o}^{2}}\right]$	$\begin{aligned} J(\mathbf{x})= & \frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+ \\ & (\mathbf{y}-H(\mathbf{x}))^{T} \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x})) \end{aligned}$
Inversion	$x_{a}=x_{b}+k\left(y-h x_{b}\right)$	$\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H x}_{b}\right)$
Kalman gain	$k=\sigma_{b}^{2} h\left(h^{2} \sigma_{b}^{2}+\sigma_{o}^{2}\right)^{-1}$	$\left.\mathbf{K}=\mathbf{B H}^{T} \mathbf{(H B H}{ }^{T}+\mathbf{R}\right)^{-1}$
	or equivalently	$\mathbf{K}=\left(\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}+\mathbf{B}^{-1}\right) \mathbf{H}^{T} \mathbf{R}^{-1}$
Aver. Kernel	$a=k h$	$\mathbf{A}=\mathbf{K H}$
DFS	$\frac{(y-h x)^{2}}{\sigma_{o}^{2}} \uparrow \text { in } J(x)$	$E\left[\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)\right]$
DoF Noise	$\frac{\left(x-x_{b}\right)^{2}}{\sigma_{b}^{2}} \uparrow \text { in } J(x)$	$E\left(\varepsilon^{T} \mathbf{R}^{-1} \varepsilon\right)$
Fisher Info. Mat. (precision)	$\left(\sigma_{a}^{2}\right)^{-1}=\left(\sigma_{b}^{2}\right)^{-1}+h^{2}\left(\sigma_{o}^{2}\right)^{-1}$	$\mathbf{P}_{a}^{-1}=\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}$
Posterior Err. Cov. Mat.	$\sigma_{a}^{2}=(1-k h) \sigma_{b}^{2}$	$\mathbf{P}_{a}=(\mathbf{I}-\mathrm{KH}) \mathbf{B}$

More on DFS

$$
\begin{array}{rlr}
\mathbf{D F S} & =E\left[\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)\right] & \\
& =E\left\{\operatorname{tr}\left[\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\right\}\right. \\
& =\operatorname{tr}\left\{E\left[\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\right\}\right. & \\
& =\operatorname{tr}\left\{\mathbf{K} E\left[\left(\mathbf{y}-\mathbf{H} \mathbf{x}_{b}\right)\left(\mathbf{y}-\mathbf{H} \mathbf{x}_{b}\right)^{T} \mathbf{K}^{T} \mathbf{B}^{-1}\right\}\right. \\
& =\operatorname{tr}\left\{\mathbf{K}\left(\mathbf{H B} \mathbf{B H}^{T}+\mathbf{R}\right) \mathbf{K}^{T} \mathbf{B}^{-1}\right\} & \\
& =\operatorname{tr}(\mathbf{K H})=\operatorname{tr}(\mathbf{A}) & \text { Trace of averaging kernel } \\
& =\operatorname{tr}\left[\left(\mathbf{B}-\mathbf{P}_{\mathbf{a}}\right) \mathbf{B}^{-1}\right] & \text { Reduction of uncertainty } \\
& =\operatorname{tr}(\overbrace{\mathbf{B H}^{T} \underbrace{\left.\mathbf{(H B} \mathbf{H}^{T}+\mathbf{R}\right)^{-1}}_{\text {Info. from obs. }} \mathbf{H}}^{K}) \quad \text { Propagation of informatioin }
\end{array}
$$

Inversion methods

$$
\mathbf{x}_{\mathrm{a}}, \mathbf{A}
$$

Analytical inversion: linear algebra, maximal 5000-10000 parameters

$$
\begin{gathered}
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathbf{H} \mathbf{x}_{b}\right) \\
\mathbf{P}_{a}=(\mathbf{I}-\mathbf{K H} \mathbf{H}) \mathbf{B}
\end{gathered}
$$

Variational Analysis: Gaussian assumptions + MAP \Rightarrow least square errors (Gauss' result) Numerical optimization; easily dealing with a million parameters; adjoint techniques

$$
\begin{gathered}
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+(\mathbf{y}-H(\mathbf{x}))^{T} \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x})) \\
\mathbf{P}_{a}=\left(\frac{1}{2} J^{\prime \prime}\right)^{-1}
\end{gathered}
$$

Ensemble approach: representing PDFs with samples of manageable size

Sketch of Bayesian Synthesis

- Red: true prior and posterior
- Points: samples
- Contours: Gaussian prior and posterior
- Obs for x_{1}

Imporatant roles of \mathbf{B} and \mathbf{R}

Fundamental role of \mathbf{B} : corrections only in the column space of \mathbf{B} !
Kalnay 2003
B spanned by a single vector b
Sum of prior SiBcrop fluxes

$$
\mathbf{B}=\mathbf{b} \mathbf{b}^{T}
$$

Suppose $\mathbf{H}=\mathbf{I}, \quad \mathbf{R}=\alpha^{2} \mathbf{I}$
$\delta \mathbf{x}_{a}=\mathbf{x}_{a}-\mathbf{x}_{b}$

$$
=\mathbf{B} \mathbf{H}^{T}\left[\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right]^{-1}\left[\mathbf{y}_{o}-H\left(\mathbf{x}_{b}\right)\right]
$$

Over 1-15 June 2007
Center USA 980km x 980 km

Balgovind correlation model

$$
C(h)=\kappa^{2}\left(1+\frac{h}{L}\right) \exp \left(-\frac{h}{L}\right)
$$

Diagnostics of error

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{b}}^{\mathrm{o}}=\mathbf{y}^{\mathrm{o}}-\boldsymbol{H}\left(\mathbf{x}^{\mathrm{b}}\right) \\
& =\mathbf{y}^{\mathrm{o}}-H\left(\mathbf{x}^{\mathrm{t}}\right)+H\left(\mathbf{x}^{\mathrm{t}}\right)-H\left(\mathbf{x}^{\mathrm{b}}\right) \\
& \simeq \epsilon^{\mathrm{o}}-\mathbf{H} \epsilon^{\mathrm{b}} \\
& E\left[\mathbf{d}_{b}^{0}\left(\mathbf{d}_{b}^{o}\right)^{\mathrm{T}}\right] \\
& =E\left[\epsilon^{\mathrm{o}}\left(\boldsymbol{\epsilon}^{\mathrm{o}}\right)^{\mathrm{T}}\right]+\mathbf{H} E\left[\epsilon^{\mathrm{b}}\left(\epsilon^{\mathrm{b}}\right)^{\mathrm{T}}\right] \mathbf{H}^{\mathrm{T}} \\
& =\mathbf{R}+\mathbf{H B H}^{\mathrm{T}} \\
& \mathbf{d}_{\mathbf{a}}^{\mathbf{o}}=\mathbf{y}^{\mathbf{o}}-H\left(\mathbf{x}^{\mathbf{b}}+\delta \mathbf{x}^{\mathbf{a}}\right) \\
& \simeq \mathbf{y}^{0}-H\left(\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H K d} \mathbf{b}_{\mathrm{b}}^{0} \\
& =(\mathbf{I}-\mathbf{H K}) \mathbf{d}_{\mathrm{b}}^{\mathrm{o}} \\
& =\mathbf{R}\left(\mathbf{H B H}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \mathbf{d}_{\mathrm{b}}^{\mathrm{d}} \text {, } \\
& E\left[\mathbf{d}_{\mathbf{a}}^{\mathrm{o}}\left(\mathbf{d}_{\mathbf{a}}^{\mathrm{o}}\right)^{\mathrm{T}}\right]=\mathbf{R}+\mathbf{H P}_{a}^{-1} \mathbf{H}^{\mathrm{T}} \\
& \left.E\left[\mathbf{d}_{\mathbf{b}}^{\mathrm{a}} \mathbf{(d}_{\mathbf{b}}^{\mathrm{o}}\right)^{\mathrm{T}}\right]=\mathbf{H B H}^{\mathrm{T}} \\
& E\left[\mathbf{d}_{\mathbf{a}}^{\mathrm{o}}\left(\mathbf{d}_{\mathrm{b}}^{\mathrm{o}}\right)^{\mathrm{T}}\right]=\mathbf{R} \\
& E\left[\mathbf{d}_{\mathrm{b}}^{\mathrm{a}}\left(\mathbf{d}_{\mathrm{a}}^{\mathrm{o}}\right)^{\mathrm{T}}\right]=\mathbf{H} \mathrm{P}_{a}^{-1} \mathbf{H}^{\mathrm{T}} \\
& \text { Desroziers et al } 2005 \\
& \mathbf{d}_{\mathrm{b}}^{\mathrm{a}}=\mathbf{H} \delta \mathbf{x}^{\mathrm{a}}=\mathbf{H K} \mathrm{d}_{\mathrm{b}}^{\mathrm{o}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}} \mathbf{d}_{\mathrm{b}}^{\mathrm{o}} \quad \mathbf{y}_{i}^{\mathrm{o}} \\
& {\left[\mathbf{d}_{\mathrm{b}}^{\mathrm{o}}\right]_{i}=\left[\mathbf{d}_{\mathrm{a}}^{\mathrm{o}}\right]_{i}+\left[\mathbf{d}_{\mathrm{b}}^{\mathrm{a}}\right]_{i}} \\
& H\left(\mathbf{x}^{\mathrm{b}}\right)_{i}
\end{aligned}
$$

Optimality System (O.S. Le Dimet 90s) and SOI

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+(\mathbf{y}-H(\mathbf{x}))^{T} \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x}))
$$

Dynamic context
Control theory for high-dimensional system

Adjoint variable: sensitivity to obs impulse
O.S. as a general model All information contained in O.S.
Optimization based on O.S.

Second order inversion (SOI)

$$
\mathfrak{J}\left(\mathbf{x}_{a}\right)
$$

I Performance of inversion system; not necessarily RMSE
\mathbf{X}_{a} Solution given by O.S.
Direct modeling Cost 1
Inversion/assim. Cost 10
SOI Cost 100

Bayesian inversion: vectorial case of linear dynamics and Gaussian error

$>$ Context: Inverse modelling of sources $\sigma(2 \mathrm{D}+\mathrm{T})$; Gaussian assumption + linear observation operator.
$>\mathrm{H}$ Jacobian matrix of the problem (observation + model):

$$
\mu=\mathbf{H} \sigma+\varepsilon
$$

$>\sigma^{b}-\sigma \sim \mathscr{N}(\mathbf{0}, \mathbf{B}) ; \sigma^{b}$ prior fluxes, B background error covariance matrix.
$>\varepsilon \sim \mathscr{N}(\mathbf{0}, \mathbf{R}) ; \mathbf{R} \quad$ observation error covariance matrix.
> BLUE analysis:

$$
\begin{aligned}
& \sigma^{a}=\sigma^{b}+\mathrm{BH}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{\mathrm{T}}\right)^{-1}\left(\mu-\mathbf{H} \sigma^{b}\right) \\
& \mathbf{P}^{a}=\mathbf{B}-\mathbf{B} \mathbf{H}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{\mathrm{T}}\right)^{-1} \mathbf{H B}
\end{aligned}
$$

$>$ A representation ω is a discretization of the space-time domain of control (parameter) space Ω.

Bayesian inversion: vectorial case of linear dynamics and Gaussian error

Decomposition of observation error: $\quad \varepsilon_{\omega}=\varepsilon+\varepsilon_{\omega}^{c}+\varepsilon_{\omega}^{m}$

CO2 flux inversion

$>\mathrm{CO} 2$ Inversion: Using concentration observations to retrieve surface CO2 fluxes.
$>$ III-posed problem due to the flux-observation mismatch (e.g. diffusive atmospheric transport that links fluxes with observations)
$>$ Aggregation of flux variables, e.g. eco-regions or coarser regular grid => aggregation error
$>$ Bayesian inversion: regularized by prior information (correlation in prior flux errors)
>Plan
$>$ Error diagnosis
$>$ Aggregation error: multiscale inversion (resolution optimization) \& direct aggregation.
> Estimates parameters of the prior and observation errors (hyperparameter estimation)

Diagnosis of error

Chevallier \& O'Dell 2013
$>$ Variational inversion, Monte Carlo simulations for error statistics
$>$ Compare with GOSAT data

- $\begin{gathered}\text { Departurs } \\ \text { Astignod }\end{gathered}$

$$
\begin{gathered}
E\left[\left(\mathbf{H x}_{b}-\mathbf{y}\right)\left(\mathbf{H x}_{b}-\mathbf{y}\right)^{T}\right] \\
\quad=\mathbf{H B H}^{T}+\mathbf{R} \\
E\left[\left(\mathbf{H x}_{a}-\mathbf{y}\right)\left(\mathbf{H x}_{a}-\mathbf{y}\right)^{T}\right] \\
\quad=\mathbf{H P}_{u}^{-1} \mathbf{H}^{T}+\mathbf{R}
\end{gathered}
$$

Aggregation error

Kaminski et al 2011
Missing small scale details (high frequency)

Bousquet et al 2000

Kaminski \& Heimann 2001

Second Order Inversion

Aggregation error

Multiscale structure

- Memory costs for a 2D+T control space
- Tilings: up to 8 times the size of the finest grid Jacobian
- Qtrees: up to $8 / 3$ times the size of the finest grid Jacobian.
- Empirically, optimisation on the qtrees is twice faster than on the tilings.

Multiscale inversion

- The source variables (vector σ) can be discretised on an adaptive grid ω.
- Restriction $\left(\Gamma_{\omega}\right)$ and prolongation $\left(\Gamma_{\omega}^{*}\right)$ operators can help to transfer σ from the finest regular grid cell Ω to ω.
- The composition of a restriction and a prolongation gives a projection operator Π_{ω} which depends on the geometry of ω.

Up and down the scale ladder (1/4)

Restriction and prolongation

- Restriction operator : $\sigma \underset{\text { coarse graining }}{\longrightarrow} \sigma_{\omega}=\Gamma_{\omega} \sigma$, where $\Gamma_{\omega}: \mathbb{R}^{N_{\mathrm{fg}}} \rightarrow \mathbb{R}^{N}$ defines the coarse graining operator (non-ambiguous).
- Prolongation operator: $\Gamma_{\omega}^{\star}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N_{\mathrm{fg}}}$ refines σ_{ω} into σ (ambiguous). Scaling of errors
- Background error covariance matrix: $\mathbf{B}_{\omega}=\mathbf{\Gamma}_{\omega} \mathbf{B} \boldsymbol{\Gamma}_{\omega}^{\mathrm{T}}$,
- Observations/representativity/model errors: \mathbf{R}_{ω}, to be discussed later.

Up and down the scale ladder (2/4)

Bayesian choice of a prolongation operator

- Idea: Use prior $\sigma \sim \mathscr{N}\left(\sigma_{b}, \mathbf{B}\right)$ to refine the source. Knowing σ_{ω} in representation ω, then from Bayes' rule, the most likely refined source is given by the mode of

$$
q\left(\sigma \mid \sigma_{\omega}\right)=\frac{q(\sigma)}{q_{\omega}\left(\sigma_{\omega}\right)} \delta\left(\sigma_{\omega}-\Gamma_{\omega} \sigma\right)
$$

Up and down the scale ladder (3/4)

Bayesian choice of a prolongation operator

- Refinement is now a statistical process ! But the prolongation operator will be defined as the most likely refinement operation.
- Thus the (estimate of the) refined source is

$$
\sigma^{\star}=\sigma_{b}+\mathbf{B} \boldsymbol{\Gamma}_{\omega}^{\mathrm{T}}\left(\boldsymbol{\Gamma}_{\omega} \mathbf{B} \boldsymbol{\Gamma}_{\omega}^{\mathrm{T}}\right)^{-1}\left(\sigma_{\omega}-\boldsymbol{\Gamma}_{\omega} \sigma_{b}\right)
$$

which suggests the (affine) prolongation operator

$$
\boldsymbol{\Gamma}_{\omega}^{\star} \equiv\left(\mathbf{I}_{\mathrm{Nfg}_{\mathrm{fg}}}-\boldsymbol{\Pi}_{\omega}\right) \sigma_{b}+\boldsymbol{\Lambda}_{\omega}^{\star}
$$

where the linear part of Γ_{ω}^{\star} is

$$
\boldsymbol{\Lambda}_{\omega}^{\star} \equiv \mathbf{B} \boldsymbol{\Gamma}_{\omega}^{\mathrm{T}}\left(\boldsymbol{\Gamma}_{\omega} \mathbf{B} \boldsymbol{\Gamma}_{\omega}^{\mathrm{T}}\right)^{-1}, \quad \text { and } \quad \boldsymbol{\Pi}_{\omega} \equiv \boldsymbol{\Lambda}_{\omega}^{\star} \boldsymbol{\Gamma}_{\omega}
$$

Up and down the scale ladder (4/4)

Up and down

- Must consistently satisfy $\boldsymbol{\Gamma}_{\omega} \Gamma_{\omega}^{\star}=\mathbf{I}_{N}$.
- Down and up: $\boldsymbol{\Gamma}_{\omega}^{\star} \boldsymbol{\Gamma}_{\omega}=\left(\mathbf{I}_{\mathrm{Nfg}_{\mathrm{fg}}}-\boldsymbol{\Pi}_{\omega}\right) \sigma_{b}+\boldsymbol{\Pi}_{\omega}$

Properties of Π_{ω}

- $\boldsymbol{\Pi}_{\omega}$ is a projector since $\boldsymbol{\Pi}_{\omega}^{2}=\boldsymbol{\Pi}_{\omega}$.
- It is also $\mathbf{B}^{\mathbf{1}}$-symmetric: $\boldsymbol{\Pi}_{\omega} \mathbf{B}=\mathbf{B} \boldsymbol{\Pi}_{\omega}^{\mathrm{T}}$.

Observation equation in representation ω

- Then \mathbf{H} becomes $\boldsymbol{H}_{\boldsymbol{\omega}}=\mathbf{H} \Gamma_{\omega}^{\star}$, and

$$
\mu=\boldsymbol{H}_{\omega} \sigma_{\omega}+\varepsilon_{\omega}=\mathbf{H} \boldsymbol{\Gamma}_{\omega}^{\star} \mathbf{\Gamma}_{\omega} \sigma+\varepsilon_{\omega},
$$

so that

$$
\mu=\mathbf{H} \sigma_{b}+\mathbf{H} \Pi_{\omega}\left(\sigma-\sigma_{b}\right)+\varepsilon_{\omega} .
$$

Accounting for aggregation errors

- Consistent observation equations:

$$
\mu=\mathbf{H} \sigma+\varepsilon=\mathbf{H}_{\omega} \sigma_{\omega}+\varepsilon_{\omega} .
$$

- Assuming aggregation is the only source of scale-dependent errors, one has $\mathbf{H} \sigma+\boldsymbol{\varepsilon}=\mathbf{H} \sigma_{b}+\mathbf{H} \boldsymbol{\Pi}_{\omega}\left(\sigma-\sigma_{b}\right)+\varepsilon_{\omega}$, leading to the identification

$$
\varepsilon_{\omega}=\varepsilon+\mathbf{H}\left(\mathbf{I}_{N_{\mathrm{fg}}}-\boldsymbol{\Pi}_{\omega}\right)\left(\sigma-\sigma_{b}\right)=\varepsilon+\varepsilon_{\omega}^{c}
$$

- Assuming independence of the error and source priors, the computation of the covariance matrix of these errors leads to

$$
\mathbf{R}_{\omega}=\mathbf{R}+\mathbf{H}\left(\mathbf{I}_{\mathbf{N E}_{\mathrm{Eg}}}-\boldsymbol{\Pi}_{\omega}\right) \mathbf{B H}^{\mathrm{T}} .
$$

- In that case, one checks that the innovation statistics $\mathbf{D}=\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}$ are scale-independent $\left(\mathbf{R}+\mathbf{H}_{\omega} \mathbf{B}_{\omega} \mathbf{H}_{\omega}^{\mathrm{T}} \longrightarrow \mathbf{R}_{\omega}+\mathbf{H}_{\omega} \mathbf{B}_{\omega} \mathbf{H}_{\omega}^{\mathrm{T}}=\mathbf{R}+\mathbf{H B} \mathbf{H}^{\mathrm{T}}\right)$.

Optimal representation mitigates aggregation effect

- ω maximizes DFS (bocquet et al., 2011): normalized uncertainty reduction $\left(\mathbf{B}-\mathbf{P}^{\mathbf{a}}\right) \mathbf{B}^{-1}=\mathbf{B H}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{H}$

$$
\operatorname{DFS}_{\omega}=\operatorname{Tr}\left(\boldsymbol{\Pi}_{\omega} \mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{H}\right) .
$$

Optimal information propagation from observation sites to the whole domain

- The aggregation effect can be quantified by:

$$
\begin{aligned}
\widehat{\mathscr{J}_{\omega}} & =\operatorname{Tr}\left[\mathbf{R}^{-1}\left(\mathbf{R}_{\omega}-\mathbf{R}\right)\right] \\
& =\operatorname{Tr}\left(\mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)-\operatorname{Tr}\left(\boldsymbol{\Pi}_{\omega} \mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) .
\end{aligned}
$$

To minimize the aggregation effect is equivalent to the maximization of the Fisher criterion (Wu et al., 2011):

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}_{\omega} \mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) .
$$

which is the limiting case of the DFS criterion when \mathbf{R} is inflated or when \mathbf{B} vanishes.

Inversion system: Experimental setup

Continuous, Well-Calibrated CO_{2} Measurements in North America

- PSU"Ameriflux"sites
- Canarin Valley WV 7 in ABL - Chestaut Ridge TN (B1 magll -Fort Perk MT I m Mal
- Mead (Vermal (6 m Mal)
(Psu Foing 2" ines in suppart of NACP MCI

Centervile, 18 (30 B 110 ma ac) Round Lake MN (3 SO 品 110 m AGL Kovance, 12 (30 \& 140 m AGL) Golewille Wi (30 \& 120 mAGL Mead, NE (30 B 120 m AGL)

- MOAA GMD-ESEL
- Moody TX -WLEF Fark Falls w - Argile NE Erieco
- Walnut Grove CA - West Eranch il (NMCP MCII -5utro CA
O Enviranment Canada (Worthy - Sable island Fraserdale

0 ARM-CART (Ficsher)
O Harvard (Wots?
O NOHAGMD-ESHL Sweeney Marthes Yineyard
O EOFEAS-NOES (Aimion, Wefyl
O Indiana University (Dragoni) -Morgan-Monioe O Oreger 5tate ILaw

Setup

- Domain: $980 \mathrm{~km} \times 980 \mathrm{~km}$ with $20 \mathrm{~km} \times 20 \mathrm{~km}$ grid cell
- Period: 01~15 June 2007 or weekly inversions
- μ : hourly synthetic or real observations from 8 towers
- σ^{b} : SiBcrop fluxes
- H: Computed from particles generated by Lagrangian model LPDM
- R: Diagonal or temporal correlations
- B: Diagonal or Balgovind parameterization

Optimal representations with different settings

Inversion on regular and optimal representations: diagonal B

Performance of optimal grid for diagonal B

(a) BD-R3-PD, CORR (finest grid)

(b) BD-R3-PD, CORR (regular grid)

(c) BD-R3-PD, CORR (optimal grid)

Inversion on regular and optimal representations: correlated B

Irrealistic correlation length for Balgovind B

(a) B50-R3-P50, CORR (finest grid)

(b) B20-R3-P50, CORR (finest grid)

Summary on mutiscale inversion \& aggregation error

$>$ A typical second order inversion problem
> Critereia: e.g. DFS
> Model configuration: resolution
> An ideal case: model-error-free + finest resolution available
> Explicit aggregation error + information flow map
> Maximizing Fisher criteria = minimizing aggregation error
> Future directions: model error and trade-off between aggregation and estimation error

Structure of the prior CO2 flux errors

Chevallier et al 2012
Use daily-mean eddy-covariance flux measurements to assign the error statistics of the prior fluxes (Chevallier et al., 2012)
i-th day, $1<i<T_{d}, T_{d}=365$
j-th year, $1<j<T_{y}, T_{y}=17$
s-th site, $1<s<N, N=156$

- FLUXNET Observations $\left[y_{i, j}^{s}\right]_{i, j, s}$;
- ORCHIDEE (a process-based terrestrial ecosystem model) simulations $\left[x_{i, j}^{s}\right]_{i, j, s}$.

Statistics

- Model-minus-observations
- Observation variability

Data courtesy from the FLUXNET Pls as part of a La Thuile project. 1991~2007, 156 sites

Structure of the prior CO2 flux errors

Chevallier et al 2012

For a given day i, for all site pairs, Pearson

$$
r_{i}\left(s_{p}, s_{q}\right)=\frac{\sum_{j=1}^{T_{y}}\left(d_{i, j}^{s p}-\bar{d}_{i}^{s p}\right)\left(d_{i, j}^{s q}-\bar{d}_{i}^{s q}\right)}{\sqrt{\sum_{j=1}^{T_{y}}\left(d_{i, j}^{s p}-\bar{d}_{i}^{s p}\right)^{2}} \sqrt{\sum_{j=1}^{T_{y}}\left(d_{i, j}^{s_{q}}-\bar{d}_{i}^{s q}\right)^{2}}}
$$

Model-minus-observations

$$
d_{i, j}^{s}=y_{i, j}^{s}-x_{i, j}^{s}
$$

- Short spatial correlation length of few hundred kilometers (<0.2 after 200 km)
- Independent of plant functional types except for deciduous broad-leaved forests

Structure of the prior CO2 flux errors

Chevallier et al 2012

Large temporal correlations.

For a given site s, for date lags in days, Pearson correlation $r_{s}\left(t_{p}, t_{q}\right)=\frac{\sum_{j=1}^{\sum_{y}}\left(d_{t_{p}, j}^{s}-\bar{d}_{t_{p}}^{s}\right)\left(d_{t_{q}, j}^{s}-\bar{d}_{t_{q}}^{s}\right)}{\sqrt{\sum_{j=1}^{T_{y}}\left(d_{t_{p}, j}^{s}-\bar{d}_{t_{p}}^{s}\right)^{2}} \sqrt{\sum_{j=1}^{T_{y}}\left(d_{t_{q}, j}^{s}-\bar{d}_{t_{q}}^{s_{1}}\right)^{2}}}$

Model-minus-observations
$d_{i, j}^{s}=y_{i, j}^{s}-x_{i, j}^{s}$

- Large temporal correlation length (positive for lags <85 days and for lags >274 days)
- Reflects systematic errors over weeks

Direct aggregation of prior errors

Variations of the statistics of the prior errors with respect to spatial and temporal aggregation

Chevallier et al 2012
(c) Standard deviation

(d) Standard deviation

Uncertainty quantification: hyper-parameter estimation (1/2)

$C(h)=\kappa^{2}\left(1+\frac{h}{L}\right) \exp \left(-\frac{h}{L}\right)$

- Hyper-parameters vector $\left.\boldsymbol{\theta}=\left[\kappa^{o}, \kappa^{b}, L\right]^{\mathrm{T}}\right)$
- Innovation vector $\mathbf{d}=\mu-\mathbf{H} \sigma^{b}$
- Innovation error covariance matrix $\mathbf{D}_{\boldsymbol{\theta}}=\mathbf{R}_{\boldsymbol{\theta}}+\mathbf{H B}_{\boldsymbol{\theta}} \mathbf{H}^{\mathrm{T}}$
- Likelihood

$$
p(\mu \mid \boldsymbol{\theta})=\frac{\exp \left(-\frac{1}{2}\left(\mu-\mathbf{H} \sigma^{b}\right)^{\mathrm{T}} \mathbf{D}_{\boldsymbol{\theta}}^{-1}\left(\mu-\mathbf{H} \sigma^{b}\right)\right)}{(2 \pi)^{\frac{d}{2}}\left|\mathbf{D}_{\boldsymbol{\theta}}\right|^{\frac{1}{2}}}
$$

- Maximum likelihood estimation (MLE): minimizing negative log-likelihood

$$
\mathscr{L}(\boldsymbol{\theta})=\frac{1}{2} \ln \left|\mathbf{D}_{\boldsymbol{\theta}}\right|+\frac{1}{2}\left(\mu-\mathbf{H} \sigma^{b}\right)^{\mathrm{T}} \mathbf{D}_{\boldsymbol{\theta}}^{-1}\left(\mu-\mathbf{H} \sigma^{b}\right)
$$

- Desroziers Scheme: given L, solve MLE iteratively for $\left[\kappa^{o}, \kappa^{b}\right]^{T}$

Uncertainty quantification: hyper-parameter estimation (2/2)

- χ^{2} : Gaussian assumptions lead to χ^{2} probability density with number of degrees of freedom equal to the number of observations d :

$$
\chi^{2}\left(\sigma^{a}\right)=\left(\mu-\mathbf{H} \sigma^{a}\right)^{\mathrm{T}} \mathbf{R}_{\boldsymbol{\theta}}^{-1}\left(\mu-\mathbf{H} \sigma^{a}\right)+\left(\sigma^{a}-\sigma^{b}\right)^{\mathrm{T}} \mathbf{B}_{\boldsymbol{\theta}}^{-1}\left(\sigma^{a}-\sigma^{b}\right)
$$

- Information propagation:

$$
\mathrm{DFS}=\operatorname{Tr}\left(\mathbf{B}_{\boldsymbol{\theta}} \mathbf{H}^{\mathrm{T}} \mathbf{D}_{\boldsymbol{\theta}}^{-1} \mathbf{H}\right) .
$$

- General Cross Validation (GCV) minimizes the predictive mean-square error (PMSE) formulated in $\mathbf{R}^{\mathbf{1}}$-norm:

$$
P(\boldsymbol{\theta})=\frac{1}{d}\left\|\mathbf{H}\left(\sigma^{t}-\sigma^{a}\right)\right\|_{\mathbf{R}^{-1}}^{2}
$$

Results

Results

Uncertainties for hyperparameter estimations

	σ_{o}	Daytime σ_{b}	$\sigma_{\mathrm{b}} L$
Week 1	2.89 ± 0.149	3.21 ± 1.13	20 ± 6.77
Week 2	3.08 ± 0.181	5.45 ± 1.99	40 ± 13.6
Week 3	-	-	-
Week 4	3.62 ± 0.241	7.51 ± 3.48	25 ± 7.90

$$
\mathcal{H}_{i j}(\boldsymbol{\theta})=\frac{\partial^{2} \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i} \partial \boldsymbol{\theta}_{j}} . \quad \mathcal{H}\left(\boldsymbol{\theta}^{*}\right)^{-1}
$$

Summary

Evaluates diiverse criteria: MLE, $\chi,{ }^{2}$ GCV using real data
Short correlation length: summer time mostly $15-80 \mathrm{~km}$, occasionally 100 km ; confirms the results obtained by direct aggregation of background errors.

When atmospheric transport error is significant, difficult to identify a meaningful optimal L

Uncertainties for hyperparameter estimations

	σ_{o}	Daytime σ_{b}	$\sigma_{\mathrm{b}} L$
Week 1	2.89 ± 0.149	3.21 ± 1.13	20 ± 6.77
Week 2	3.08 ± 0.181	5.45 ± 1.99	40 ± 13.6
Week 3	-	-	-
Week 4	3.62 ± 0.241	7.51 ± 3.48	25 ± 7.90

$\mathcal{H}_{i j}(\boldsymbol{\theta})=\frac{\partial^{2} \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i} \partial \boldsymbol{\theta}_{j}} . \quad \mathcal{H}\left(\boldsymbol{\theta}^{*}\right)^{-1}$.

- Why DFS is not a proper criterion for hyperparameter estimation?
- Why DFS decreases with respect to correlation length?

Few words

Inversion as a system: three components: model, obs, stat information, Optimal control theory, success of variational methods (4DVar) Other system concepts, e.g. observability?

Inversion as an information machine: information fusion and flow relative entropy, entropy dynamics, maximum entropy principle

Second order inversion: optimal configuration of inversion system \& Uncertainty quantification:
Model resolution \& aggregation error, error parameter estimation,

References

M.Bocquet, L.Wu and F.Chevallier, Bayesian design of control space for optimal assimilation of observations. I: Consistent multiscale formalism, Q.J.R.M.S., 137: 1340\{1356, 2011
F.Chevallier, T.Wang, P.Ciais, F.Maignan, M.Bocquet, et al., What eddycovariance flux measurements tell us about prior errors in CO2 flux inversion schemes, Global Biogeochem. Cy., 26, GB1021, 2012
F. Chevallier and C. W. O'Dell, Error statistics of Bayesian CO2 flux inversion schemes as seen from GOSAT, GRL, 2013, 40, 1252-1256
L.Wu, M.Bocquet, T.Lauvaux, F.Chevallier, P.Rayner, K.Davis, Optimal representation of sources for mesoscale carbon dioxide inversion with synthetic data, JGR, 116, D21304, 2011
L.Wu, M.Bocquet, T.Lauvaux, F.Chevallier, P.Rayner, K.Davis, Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions, Tellus B, 2013, 65, 20894

BridGES
SOFIE school, 2014-05-12

