Coupling between marine biogeochemistry and climate

Laurent Bopp, LSCE / IPSL

Laurent.Bopp@lsce.ipsl.fr

Coupling between marine biogeochemistry and climate

- 1. Climate change and Marine productivity
- 2. Climate change and the ocean carbon cycle
- 3. Geoengineering options involving ocean biota

Coupling between marine biogeochemistry and climate

- 1. Climate change and Marine productivity
- 2. Climate change and the ocean carbon cycle
- 3. Geoengineering options involving ocean biota

Marine Biogeochemical Models used in GCMs

Geochemical Models to Simple Ecosystem Models

Climate variability and NPP

PPano = anomaly of NPP (TgC/month)

IPSL Model (Schneider et al. 2008)

Climate variability and NPP

LETTERS

Climate-driven trends in contemporary ocean productivity

Michael J. Behrenfeld¹, Robert T. O'Malley¹, David A. Siegel³, Charles R. McClain⁴, Jorge L. Sarmiento⁵, Gene C. Feldman⁴, Allen J. Milligan¹, Paul G. Falkowski⁶, Ricardo M. Letelier² & Emmanuel S. Boss⁷

Climate variability and NPP : ENSO - Observations

PPano = anomaly of NPP (TgC/month)

From SeaWifs (Behrenfeld et al. 2006)

Climate variability and NPP: ENSO - Observations

PPano = anomaly of NPP (TgC/month)

SI = stratification index : $\rho_{200} - \rho_{surf}$ (kg m-3)

SST_{ano} = anomaly of SST (°C)

Climate variability and NPP : ENSO - IPSL model

PPano = anomaly of NPP (TgC/month)

SI = stratification index : $\rho_{200} - \rho_{surf}$ (kg m-3)

SST_{ano} = anomaly of SST (°C)

Climate variability and NPP: ENSO

PP dependence on stratification

 SEAWIFS
 -876 TgC month⁻¹ kg⁻¹ m³; R²=0.69

 IPSL
 -787 TgC month⁻¹ kg⁻¹ m³; R²=0.70

 UNIBE
 -143 TgC month⁻¹ kg⁻¹ m³; R²=0.02

Scenarios for projections

Representative concentration pathways.

RH Moss et al. Nature 463, 747-756 (2010) doi:10.1038/nature08823

Projections: Global Mean Temperature

Knuti and Sedlacek, NCC, 2012

Temperature Changes

Precipitation Changes

Knuti and Sedlacek, NCC, 2012

Cheng et al. sub.

Shoaling of Mixed Layer Depth w/ climate change

Sarmiento et al. 2004

• Global decrease (-5/10%), but increase at high latitudes (+20/30%)

Similar responses with different models

(Bopp et al. 2001)

Bopp et al. 2013

Changes in Marine Productivity

d. Integrated net primary productivity change

Impact of climate change

Impact of climate change

Sarmiento et al. 1998, Bopp et al. 2001, Doney et al. 2006

Coupling between marine biogeochemistry and climate

- 1. Climate change and Marine productivity
- 2. Climate change and the ocean carbon cycle
- 3. Geoengineering options involving ocean biota

First Studies w/ GCMs : Maier-Reimer et al. (1996), Sarmiento et al. (1996, 1998)

Sarmiento et al. 1998

Climate Change reduces ocean CO₂ sink (from –6% to –25% in 2050)

Mechanisms Re-Organisation of the Natural C Cycle Thermal Circulation Warming Depth Depth Depth Depth Decreased Vertical Mixing DIC DIC Anthropogenic Alkalinity DIC Natural

Potential Retraoctions?

Sens et certitude

Likely

3. Physical :

Warming induced stratification and reduced ventilation prevents anthropogenic carbon to penetrate into deeper oceanic layers

4. Biological :

Organic C export Planctonic ecosytem strtucture +/- ?

- 2. Climate and Marine Biogeochemistry : Carbon Fluxes
 - 4. Biological :

Production / Export de C Structure de l'écosystème planctonique

<u>Diatomées :</u> grosses cellules à tests siliceux

Prochlorococcus :

petites cellules, recyclées en surface

шn

<u>Coccolithophoridés :</u>

tests calcaires cycle des carbonates

Feedback Linear Analysis

$$\Delta CO_2 = \text{emissions} - \Delta F_{ao} - \Delta F_{ab} \quad (1)$$

$$\Delta T = \alpha \Delta CO_2 + \Delta T_{ind} \quad (2)$$

with:

 $\Delta F_{ao} = \beta_{ao} \Delta CO_2 + \gamma_{ao} \Delta T \quad (3)$ $\Delta F_{ab} = \beta_{ab} \Delta CO_2 + \gamma_{ab} \Delta T \quad (4)$

$$\Delta T = 1/(1-g) \Delta T_{unc}$$

with:

g = $\alpha (\gamma_{ao} + \gamma_{ab})/(1 + \beta_{ao} + \beta_{ab})$

g is the gain of the retraoction

a. Regional carbon-concentration feedback

Fig 6.22, Chap 6, IPCC AR5 2013 (climate-carbon feedbacks analysed as in Roy et al. 2011)

a. Regional carbon-concentration feedback

⁽h = 0 == 2 K 1)

Coupling between marine biogeochemistry and climate

- 1. Climate change and Marine productivity
- 2. Climate change and the ocean carbon cycle
- 3. Geoengineering options involving ocean biota

Iron cycle and the HNLC regions

Principal paradigm: if nutrient are abundant and light not limiting....

Iron cycle and the HNLC regions

3 hypothesis

• Light limitation, essentially for the Southern Ocean

• Limitation by grazing, essentially for the North Pacific (Frost, 1993)

Iron- or silicate limitation (Gran, 1931; J. Martin, 1985-1990)

Iron Cycle

From 1930 to 1980, all attempts to measure dissolved iron have failed

Very low concentrations (~ nM)

Contaminations (ultra-clean techniques are needed)

Since 1980, 13,000 measurements of dissolved iron

- Generally less than 1 nM
- Nutrient-type vertical profile
- But no increase in concentration from the deep atlantic to the deep pacific
- Deep concentrations generally less than < 0.8 nM</p>

Co-limitations – Spatial distribution

Symbols indicate the primary (central circles) and secondary (outer circles) limiting nutrients as inferred from chlorophyll and/or primary productivity increases following artificial amendment of N (green), P (black), Fe (red), Si (orange), Co (yellow), Zn (cyan) and vitamin B12 (purple)

(Moore et al. 2013)

Diatoms co-limitation in PISCES

In-situ iron fertilization experiments

In-situ iron fertilization experiments

SOIREE after 42 days SeaWiFS Abraham et al., 2000

In-situ iron fertilization experiments: effects on Chl and pCO2

Increase in Chla 19 18 17 7 -6 -5 -4 -3 -2 -1 . 0 Hone+?? ironet.1 seeds 50'ét 11 50'ét 11 50'é **Eitet** soiree tisenet Experiment

Decrease in surface pCO2

Several private companies - Patents

Technology

News

Planktos Ocean Farming Inc. GreenSea Venture Inc ...

GreenSea Venture INC.

http://www.greenseaventure.com/

- approximated; and
- A comprehensive, rigorous, and transparent system for monitoring can be created and maintained.

Early 90s papers: Physical Model: Box (Broecker and Peng (1991), Joos et al. (1991)) or OGCM (Sarmiento and Orr (1991))

Biogeochemical Model: $PO_4 \rightarrow Export of OM$

Modelling Iron Fertilization: What's new?

- [Fe] set at 2 nM everywhere for 100 yrs

500 60°N 300 100 5D 30°N 30 10 ٥٥ -10 -30 30°S -50 -10D 60°S -300 -500 180°W 120°W 60°W ٥° 60°E 120°E 180°

b Changes in PP (annual mean) after 100 yr of Fe fert.

- Primary Prodcutivity (PP) increases
 by up to +50 % then
 decreases gradually
- Maximum effect on atmospheric pCO2 is -33 ppm after 100yr,
 -7 ppm after 10.
- 33% of export carbon comes from the atmosphere
- Only fertilizing SO is (very moderatly) efficient
- If fertilization is stopped, PP decreases sharply below previous levels and effect on pCO2 is decreased.

Ocean pipes could help the Earth to cure itself

SIR — We propose a way to stimulate the Earth's capacity to cure itself, as an emergency treatment for the pathology of global warming.

James E. Lovelock*, Chris G. Rapley† *Green College, University of Oxford, Woodstock Road, Oxford OX2 6HG, UK †Science Museum, Exhibition Road, South Kensington, London SW7 2DD, UK

Nature, 2007

- Fertilize the biological pump via an artificial « upwelling » of deep nutrients
- Increase uptake of atmospheric CO₂
- Already being investigated commercially /

- 2 modelling studies so far (Yool et al. 2009, **Dutreuil et al. 2009**)

Model Used : PISCES model

Experimental Design: « Pipes » every 20°x10°, 200m deep, 20 years (2000-2020) No change in T and S (solubility).

Impact on Export Production after 20y

• Carbon Export increases in response to the greater vertical supply of nutrients

 But a weak response in Fe limited regions (Southern Ocean, equatorial Pacific)

(increased Fe/C ratios)

• Upwelling of DIC increases pCO₂ and decreases uptake of atmospheric CO₂

• But some regions are sinks around pipe location

• Response very diverse regionally:

Compare NE Pac (+) / Southern Ocean (-) / Tropical Atlantic (---)

Modelling Ocean Pipes: Impact on CO₂

• Upwelling of DIC increases pCO₂ and decreases uptake of atmospheric CO₂

• But some regions are sinks around pipe location

• Response very diverse regionally:

Compare NE Pac (+) / Southern Ocean (-) / Tropical Atlantic (---)

• 3 factors influence pCO_2 and thus air-sea CO_2 exchange:

1. DIC 2. Alkalinity 3. Bio. Export (linked to changes in nutrient)

- 3 factors influence pCO_2 and thus air-sea CO_2 exchange:
 - 1. DIC 2. Alkalinity 3. Bio. Export (linked to changes in nutrient)

(and also T and S would change...)

- Global impact on CO_2 is « negative » (+ 6 ppm) despite a 6% increase in export
- When taking only favorable regions (subartic Pacific here),

only very moderate pCO2 response (less than a 1ppm reduction)

- Comparison to Yool et al. 2009 study:

-Design not similar (variable depth, translocation instead of mixing,...)

- large spatial variability in efficiency (from – to + in the tropics)

- would require 100s of millions of pipes to be efficient

-Lots of caveats:

-Simplistic representation ecosystem / export

- C/Si and C/Fe variability but no C/N variations...