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Marine Biogeochemical Models used in GCMs 

Geochemical Models  ……     to   ….. Simple Ecosystem Models 



PPano 

PPano = anomaly of NPP (TgC/month) 

+ productive 

- productive 

Model Evaluation 

IPSL Model 
(Schneider et al. 2008) 
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Climate variability and NPP 



PPano = anomaly of NPP (TgC/month) 
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From SeaWifs (Behrenfeld et al. 2006) 

Climate variability and NPP : ENSO - Observations 



PPano = anomaly of NPP (TgC/month) 

SI = stratification index    : ρ200 – ρsurf  (kg m-3) 

SSTano  = anomaly of SST (°C) 
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SI = stratification index    : ρ200 – ρsurf  (kg m-3) 
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Climate variability and NPP : ENSO - IPSL model 



PP dependence on stratification 
SEAWIFS  -876 TgC month-1 kg-1 m3; R2=0.69 
IPSL  -787 TgC month-1 kg-1 m3 ; R2=0.70 

UNIBE  -143 TgC month-1 kg-1 m3 ; R2=0.02 

Climate variability and NPP: ENSO  



Scenarios for projections 

RH Moss et al. Nature 463, 747-756 (2010) doi:10.1038/nature08823 

Representative concentration pathways. 



Projections: Global Mean Temperature 

Knuti and Sedlacek, NCC, 2012 



Temperature Changes 

Knuti and Sedlacek, NCC, 2012 



Precipitation Changes 

Knuti and Sedlacek, NCC, 2012 



Atl. Meridional Overturning  
CIrculation 

Cheng et al. sub. 
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• Similar responses with different models  (Bopp et al. 2001) 

Zonal Mean 
(2100-1990) 

-30 % +30 % 
• Global decrease (-5/10%), but increase at high latitudes (+20/30%) 

Simulation NPZD-IPSL, 2100-1990 30 gC m-2 an -1 

- 30 gC m-2 an -1 

Changes in Marine NPP 



Bopp et al. 2013 



Bopp et al. 2013 

Changes in Marine Productivity 



Impact of climate change 

Climate Change impact on marine productivity : mechanisms 

Sarmiento et al. 1998, Bopp et al. 2001, Doney et al. 2006 



Impact of climate change 

Climate Change impact on marine productivity : mechanisms 

Sarmiento et al. 1998, Bopp et al. 2001, Doney et al. 2006 
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Sarmiento et al. 1998 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 

First Studies w/ GCMs : Maier-Reimer et al. (1996), Sarmiento et al. (1996, 1998) 



IPCC, 2001 

Climate Change reduces ocean CO2 sink 
   (from –6% to –25% in 2050) 

Climate  
Change 
Impact 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 



Mechanisms 

Thermal Circulation 

Re-Organisation of  
the Natural C Cycle 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 



Potential Retroactions? 

1.  Chemical: 
 Acidification reduces the ability of the oceans  
 to absorb anthopogenic CO2 

Direction  & Uncertainty 

+ Certain 

2.   Thermal: 
 Warming decreases solubility, which leas to CO2 
 outgassing +       Certain 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 



3.  Physical : 
       Warming induced stratification and reduced ventilation 

 prevents anthropogenic carbon to penetrate into deeper  
 oceanic layers 

Sens    et      certitude 

+ Likely 

4.    Biological : + / - ? 

Organic C export 
Planctonic ecosytem strtucture 

Potential Retraoctions? 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 



4.    Biological : + / - ? 

Production / Export de C  
Structure de l’écosystème planctonique 

Diatomées :  
       grosses cellules 
       à tests siliceux 
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 Prochlorococcus :  

    petites cellules, recyclées 
    en surface 

Coccolithophoridés :  
    tests calcaires 
    cycle des carbonates 

2. Climate and Marine Biogeochemistry : Carbon Fluxes 



Fig 6.24, Chap 6, IPCC AR5 2013 

Ocean C uptake simulated  
by the CMIP5 ESMs 
for the historical period 
and the 4 RCPs 



Feedback Linear Analysis 
ΔCO2  =  emissions - Δ Fao - Δ Fab  (1) 
 ΔT  =   α Δ CO2 + ΔTind  (2) 
with: 
Δ Fao  =  βao ΔCO2  +γao ΔT   (3) 
Δ Fab  =  βab ΔCO2  +γab ΔT   (4) 

ΔT  =  1/(1-g) ΔTunc 
with: 
g  =   α (γao + γab )/(1+ βao + βab)  

g is the gain of the retraoction 



Fig 6.22, Chap 6, IPCC AR5 2013 

Climate Carbon  
      Feedbacks 

Carbon-concentration effect (β) 

(Section 6.4.2) 

(climate-carbon feedbacks analysed as in Roy et al. 2011) 



III. Climate Carbon  
      Feedbacks 

Carbon-concentration effect (β) 

Carbon-climate effect (γ) 

Fig 6.22, Chap 6, IPCC AR5 2013 

(Section 6.4.2) 
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Iron cycle and the HNLC regions"

"   Principal paradigm: if nutrient are abundant and light not limiting…."

Chla, SEAWiFS Nitrates, WOA2001 



"   3 hypothesis"

"  Light limitation, essentially for the Southern Ocean"

"  Limitation by grazing, essentially for the North Pacific (Frost, 1993)"

"  Iron- or silicate limitation (Gran, 1931; J. Martin, 1985-1990)"

Iron cycle and the HNLC regions"



Iron Cycle"

"   From 1930 to 1980, all attempts to measure dissolved iron have failed"

"  Very low concentrations (~ nM)"

"  Contaminations (ultra-clean techniques are needed)"

"   Since 1980, 13,000 measurements of dissolved iron"

"  Generally less than 1 nM"

"  Nutrient-type vertical profile"

"  But no increase in concentration from the deep atlantic 
to the deep pacific"

"  Deep concentrations generally less than < 0.8 nM"



Co-limitations – Spatial distribution"

Fe 

NO3 Si 

Diatoms co-limitation in PISCES 

Symbols indicate the primary (central circles) and  
secondary (outer circles) limiting nutrients as inferred 
 from chlorophyll and/or primary productivity increases  
following artificial amendment of  
N (green), P (black), Fe (red), Si (orange),  
Co (yellow), Zn (cyan) and vitamin B12 (purple)  

(Moore et al. 2013) 



In-situ iron fertilization experiments"



SOIREE after 42 days"
SeaWiFS"
Abraham et al., 2000"

In-situ iron fertilization experiments"



"   Increase in Chla"

"  Decrease in surface pCO2"

In-situ iron fertilization experiments: effects on Chl and pCO2"



Several private companies - Patents 

 Planktos 
 Ocean Farming Inc. 
 GreenSea Venture Inc … 



Iron Fertilization: Nutrient Depletion Experiment 

Early 90s papers:    Physical Model: Box (Broecker and Peng (1991), Joos et al. (1991)) 
     or OGCM (Sarmiento and Orr (1991)) 

Biogeochemical Model:   PO4 → Export of OM 

Hypothesis: Fe fertilization able to deplete  
                      surface PO4 entirely… 

Atmospheric CO2 (ppm) 

Ocean Carbon Uptake (PgC/yr) 

(Sarmiento and Orr, 1991) 



Modelling Iron Fertilization: What’s new? 

- Biogeochemical Models have been complexified 

PO4
3- Diatoms 

MicroZoo 

P.O.M 

D.O.M 

Si 

Iron 
Nano-phyto 

Meso Zoo 

NO3
- 

NH4
+ 

Small Ones Big Ones 

PO4
3- 

P.O.M 

- All the iron fertilization EXs can be used as new constrain 
 on models’ behaviour 

PISCES  
(Aumont and Bopp, 2006) 



Ironex II like SOIREE like 

Model 

Data 

Patchy Iron Fertilization Experiment 



- [Fe] set at 2 nM everywhere for 100 yrs 

Long Term Iron Fertilization Experiment 
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- [Fe] set at 2 nM everywhere for 100 yrs 

-  Primary Prodcutivity (PP) increases  
    by up to  +50 % then  
    decreases gradually 

-  Maximum effect on atmospheric  
    pCO2  is -33 ppm after 100yr,  
    -7 ppm after 10. 

-  33% of export carbon comes from 
    the atmosphere 

-  Only fertilizing SO is (very moderatly)  
    efficient 

-  If fertilization is stopped, PP decreases  
    sharply below previous levels 
    and effect on pCO2 is decreased.  

Long Term Iron Fertilization Experiment 



 Modelling Ocean Pipes 

•  Fertilize the biological pump via an artificial 
« upwelling » of deep nutrients 

•  Increase uptake of atmospheric CO2 

•  Already being investigated commercially /     
           

scientifically 

Nature, 2007 



•  Carbon Export increases in 
response to the greater vertical 
supply of nutrients 

•  But a weak response in Fe 
limited regions (Southern 
Ocean, equatorial Pacific) 

 (increased Fe/C ratios) 

 Modelling Ocean Pipes 

Model Used : PISCES model 

Experimental Design: « Pipes » every 20°x10°, 200m deep, 20 years (2000-2020) 

No change in T and S (solubility). 

Impact on Export Production after 20y 

- 2 modelling studies so far (Yool et al. 2009, Dutreuil et al. 2009) 



•  Upwelling of DIC increases 
pCO2 and decreases uptake of 
atmospheric CO2 

•  But some regions are sinks 
around pipe location 

 Modelling Ocean Pipes: Impact on CO2 

•  Response very diverse regionally: 

       Compare NE Pac (+) / Southern Ocean (-)  / Tropical Atlantic (---) 
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•  3 factors influence pCO2 and thus air-sea CO2 exchange: 
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 Modelling Ocean Pipes: Impact on CO2 

DIC Nut, ALK Nut, ALK 

DIC, ALK, Nut 

Export 

( and also T and S would change…) 



 Modelling Ocean Pipes: Impact on CO2 

-  Global impact on CO2 is « negative » (+ 6 ppm) despite a 6% increase in export 

-  When taking only favorable regions (subartic Pacific here), 

 only very moderate pCO2 response (less than a 1ppm reduction) 

-  Comparison to Yool et al. 2009 study: 

- Design not similar (variable depth, translocation instead of mixing,…) 

 - large spatial variability in efficiency (from – to + in the tropics) 
 - would require 100s of millions of pipes to be efficient 

- Lots of caveats: 

- Simplistic representation ecosystem / export 
-  C/Si and C/Fe variability but no C/N variations… 


