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A Global Reanalysis of Vegetation Phenology
R. Stöckli,1 T. Rutishauser,2 I. Baker,3 M. A. Liniger,1 and A. S. Denning3

Abstract. Simulations of the global water and carbon cycle are sensitive to the model
representation of vegetation phenology. Current phenology models are empirical and few
predict both phenological timing and leaf state. Our previous study demonstrated how
satellite data assimilation employing an Ensemble Kalman Filter (EnKF) yields realis-
tic phenological model parameters for several ecosystem types. In this study the data
assimilation framework is extended to global scales using a subgrid-scale representation
of plant functional types (pft’s) and elevation classes. A reanalysis of vegetation phenol-
ogy for 256 globally-distributed regions is performed using 10 years of MODerate Res-
olution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Ra-
diation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) data. The 9 · 108

quality screened observations (corresponding to < 1% of the globally available MODIS
data) successfully constrain a posterior pft-dependent phenological parameter set. It re-
duces the global FPAR and LAI prediction error to 20.6% and 14.8% respectively com-
pared to the prior prediction error. A 50 year long (1960-2009) daily 1�x1� global phe-
nology dataset with a mean FPAR and LAI prediction error of 0.065 (-) and 0.34 (m2

m�2) is generated. Temperate phenology is best explained by a combination of light and
temperature. Tropical evergreen phenology is found to be largely insensitive to moisture
and light variations. Boreal phenology can be accurately predicted from local to global
scales while temperate and mediterranean landscapes might benefit from a better subgrid-
scale pft classification or from a more complex canopy radiative transfer model.

1. Introduction

Land surface vegetation is an interactive part of the cli-
mate system. Leaf transpiration influences cloudiness, tem-
perature and moisture patterns of the atmosphere on the
synoptic to climatological time scale [Heck et al., 1999;
Tsvetsinskaya et al., 2001; Lu et al., 2001; Kim and Wang ,
2005; Betts and Viterbo, 2005; Betts et al., 2007]. Vegetation
biomass acts as a sink (or source) for the atmospheric carbon
budget on a seasonal to centennial time scale [Keeling et al.,
1996; Kramer et al., 2000; Schaefer et al., 2005; Piao et al.,
2007; Körner , 2003]. The two processes regulating water
loss and carbon uptake are coupled [Schimel et al., 1997;
Sellers et al., 1997] and both depend on leaf stomatal open-
ing and leaf presence. Leaf physiology controls stomates
and is largely driven by local scale and short term weather
events like the diurnal variability of temperature and radi-
ation [Jarvis, 1976; Law et al., 2002; Larcher , 2003]. Leaf
phenology on the other hand describes the timing of leaf
appearance, presence and senescence and can be linked to
the large scale seasonal to interannual climatic variability
[Scheifinger et al., 2002; Menzel et al., 2006; Penuelas et al.,
2009; Körner and Basler , 2010].

Leaf physiology and leaf phenology are treated separately
in most land surface models (LSM’s) used to simulate the
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terrestrial water and carbon cycle. While several mechanis-
tic formulations of plant physiological processes have been
developed during the last three decades [Jarvis, 1976; Far-
quhar et al., 1980], highly empirical representations of plant
phenology are used in LSM’s [Cox , 2001; Foley et al., 1996;
Levis and Bonan, 2004; Jolly et al., 2005]. In several LSM’s
phenology is used as a means to scale leaf level physiological
processes to the canopy level [Sellers et al., 1996b, 1997].
Phenology models used in LSM’s simulate a continuous bio-
physical state of vegetation at the landscape scale rather
than the timing of species-specific and local-scale events like
flowering or bud burst. The latter information is available
from long term phenological observations that are mostly
confined to temperate climate zones [van Vliet et al., 2003;
Rutishauser et al., 2007].

However, the largest phenological model deficiencies are
found for subtropical and mediterranean vegetation because
model parameters are often generalized from temperate veg-
etation to global scales [Stöckli et al., 2008b]. Models often
simulate a temporal mismatch in spring green up in the or-
der of 1-2 months and show unrealistic drought responses
of LAI that have adverse e↵ects on the predicted terrestrial
water and carbon fluxes [Kucharik et al., 2006; Randerson
et al., 2009]. The ultimate goal to overcome such deficien-
cies is to further develop LSM’s with a mechanistic terres-
trial carbon-nitrogen cycling. They allow the coupling of
leaf phenology and leaf physiology by use of for instance
a prognostic carbon gain-loss formulation [Thornton et al.,
2002; Arora and Boer , 2005].

Satellite-based data assimilation can serve as an interme-
diate step to constrain unrealistic parameters of empirical
phenology models and it might be used to augment the re-
alism of terrestrial biosphere models [Demarty et al., 2007;
Mahadevan et al., 2008; Rüdiger et al., 2010; Knorr et al.,
2010; Rayner , 2010]. In Stöckli et al. [2008b] we presented
a local-scale data assimilation framework based on the En-
semble Kalman Filter (EnKF) [Evensen, 2003, 2009] that
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was able to mitigate several phenology model deficiencies
by conditioning empirical model parameters with satellite-
based phenological observations.

Our local-scale data assimilation framework is however
unrealistic for the prediction at the regional scale due to the
increase of landscape heterogeneity. A single set of parame-
ters representing a mixed vegetation signal of a specific loca-
tion cannot be used at another location with a di↵erent veg-
etation composition. A global-scale prediction would hence
require a cumbersome parameterization procedure for each
grid point. In order to be useful on global scale, our previous
framework needs to be extended. The main question is then
how to select the bins needed to disaggregate global phenol-
ogy into a discrete set of functional classes. It was chosen
here to split the mixed landscape into a discrete set of plant
functional types (pft’s) and elevation classes (hgt’s) for the
following reasons. In earth system models the terrestrial bio-
chemical cycle is often decomposed on the subgrid-scale by
using pft’s [Sitch et al., 2003; Kucharik et al., 2006; Thorn-
ton et al., 2007]. In comparison to biomes pft’s group plant
species with similar physiological, structural and phenolog-
ical traits. Satellite remote sensing data can be used to de-
rive pft’s globally [Bonan, 2002; Lawrence and Chase, 2007].
However, any satellite-based classification is ultimately con-
strained by a incomplete set of functional traits [Ustin and
Gamon, 2010] that only account for optical vegetation prop-
erties. Elevation classes are used since recent findings show
that for instance a 100 m elevation di↵erence can shift the
leaf-out date by several days [Fisher et al., 2006] which re-
quires a subgrid-scale treatment of the forcing weather data
in a global prediction where grid cells can include substan-
tial variability in elevation.

The aim of this study is to create a global MODIS-based
reanalysis dataset of vegetation phenology. It should pro-
vide a data assimilation and modeling framework to earth
system modelers with the capability to assimilate and pre-
dict FPAR and LAI of natural vegetation types. We firstly
would like to evaluate whether the chosen data assimila-
tion scheme allows to constrain a pft-dependent parameter
set with 10 years of assimilated MODIS data. We secondly
would like to test whether the chosen phenology model, the
pft and hgt classification and the final satellite-constrained
parameter set are suited to yield realistic global-scale phe-
nological predictions. In the methods section the prognos-
tic phenology model is presented, followed by a description
of the data assimilation system. Global-scale data assimi-
lation experiments are then performed to constrain a pft-
dependent phenological parameter set. This parameter set
is used to predict global, regional and local FPAR and LAI.
A global phenological reanalysis dataset covering 50 years
(1960-2009) is finally presented. Analysis of observed and
predicted FPAR and LAI followed by a thematic discussion
then evaluate the soundness of our method and dataset.

2. Methods
2.1. Phenology Model

The GSI (Growing Season Index) by Jolly et al. [2005]
diagnoses the state of vegetation by use of three major cli-
matic drivers serving as surrogates for the underlying con-
trols on vegetation phenology: low temperatures, evapora-
tive demand, and photoperiod. Stöckli et al. [2008b] and
this study extended the GSI model into a prognostic phe-
nology model that predicts the biophysical vegetation states
FPAR and LAI.
2.1.1. Theory

The GSI (-) is the product of three environmental factors
f(T ), f(L) and 1-f(W ),

GSI = f(T ) · f(L) · (1� f(W )) (1)
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can alternatively be driven by photoperiod (daylength) in-
stead of global radiation as suggested by Jolly et al. [2005]
and scientifically outlined by Körner [2006].

The prognostic phenological state P (-) can be related to
the biophysical state FPAR (-) by use of a linear relationship
[Sellers et al., 1996a; Los et al., 2000],

P = f(FPAR) (3)

where f(x) is given in Equation 2, FPAR
min

and FPAR
max

are the minimum and maximum FPAR corresponding to the
least and most developed state of vegetation. The growth
vector @GSI/@t (-) then gives the direction and rate of leaf
growth or decay used to calculate the change in FPAR with
a logistic growth model,

@GSI
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= GSI� P (4)
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· P (1� P ) . (5)

As presented by Dickinson et al. [2008] growth and senes-
cence can be modeled as two separate processes. We choose
a di↵erent maximum rate for leaf growth �
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(day�1) and
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d

) instead,
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According to Sellers et al. [1996a] and Los et al. [2000] the
biophysical state LAI (m2 m�2) can be related to FPAR
by use of the Monsi-Saeki light interception model based on
Beer’s law for LAI, respectively [Monsi and Saeki , 2005],
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where f

v

(-) is the vegetation fraction and FPAR
sat

(-) is
the FPAR value reached at the maximum Leaf Area Index
LAI

max

(m2 m�2).
2.1.2. Implementation

A semi-implicit numerical scheme is used for the time in-
tegration. In comparison to Stöckli et al. [2008b] each grid-
scale FPAR and LAI prediction is composed of subgrid-scale
predictions covering h=1 . . . n

hgt

elevation classes (hgt) and
p = 1 . . . n

pft

plant functional type classes (pft). Meteo-
rological forcing is downscaled by hgt. Phenological model
parameters are decomposed by pft. The prognostic states
are therefore decomposed by both hgt and pft. They can be
identified by their superscript time indices t and t+1 in the
following equations. GSI is diagnosed at every time step,

GSI(p, h) =f(T t+1(p, h)) · f(Lt+1(p, h))

· (1� f(W t+1(p, h))) ,
(9)
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with new prognostic values of x

t+1 = {T , L, W} that de-
pend on their previous values x

t, on the current elevation-
dependent weather forcing y = {T

m

, R

g

, vpd} and on the
pft-specific time averaging parameters z = {⌧
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Leaf growth �FPAR depends both on the new phenological
state GSI and the previous biophysical state FPAR,

P (p, h) = f(FPARt(p, h)) (11)

�GSI(p, h) = GSI(p, h)� P (p, h) (12)
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FPARt+1(p, h) = FPARt(p, h) + �FPAR(p, h) . (15)

Compared to Stöckli et al. [2008b] LAI is a diagnostic vari-
able derived from the prognostic state FPAR at each time
step,
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Grid-scale FPAR and LAI are calculated by area weighted
summation (a

p

and a

h

are fractional areas for each pft and
hgt class) of the pft- and hgt-specific FPAR and LAI states:

FPAR =

n

hgtX

h=1

n

pftX

p=1

a

h

a

p

FPAR(p, h) (17)

LAI =

n

hgtX

h=1

n

pftX

p=1

a

h

a

p

LAI(p, h). (18)

The following numerical constraints are used: P (1�P ) =
max(P (1 � P ), 0.01); f

v

= 1.0 since the vegetation frac-
tion is represented by the fractional areas a

p

of each pft;
FPAR

sat

= min(max(FPAR
sat

, 0.001), 0.999). Natural log-
arithms in equation 16 are constrained to be larger than 0.0
and lower than 1.0.

2.2. Data Assimilation Model

Ensemble data assimilation is the key method of this
study. It enables to find realistic values as well as their
uncertainties for a large set of unknown pft-specific model
parameters in the above equations by use of a global set of
satellite observations.
2.2.1. Theory

The Ensemble Kalman Filter (EnKF) after Evensen
[1994, 2003] is applied in this study with modifications for
joint state and parameter estimation following Moradkhani
et al. [2005]; Evensen [2009]. The EnKF conditions N prior
model states and parameter ensemble members with m ob-
servations yielding a posterior model state and parameter
ensemble,

Aa = Af + K
“
D�HAf

”
, (19)

where Af is the ensemble matrix containing the prior
model states and parameters. They are updated to Aa when
new observations D become available. H is the operator re-
lating observed to model states and parameters, D�HAf is
the matrix of innovation and K is the Kalman gain (for de-
tails see Evensen [2003]). A is a matrix holding N ensemble
members of the vector  with n states x and parameters ✓.
D is the matrix holding N ensemble members of the vector
d with m observations,
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The state and parameter ensemble members  0
i

are per-
turbed at the beginning of the model integration by use of
a Gaussian distribution with mean 0 and initial variance
V

0
 

. The observation ensemble members d

i

are perturbed
with mean 0 and with the observation variance V

d

at each
analysis time step.
2.2.2. Implementation

States and parameters making up the Matrix A are de-
fined in Table 1 with initial (prior) values similar to those
given in Jolly et al. [2005] and variances encompassing the
orders of magnitude found in the global climate system.

Directly assimilating all global 1 km MODIS FPAR and
LAI observations would yield a Matrix D with dimensions
of O(109) observations x O(103) ensemble members which
is computationally very expensive to solve with the EnKF
framework. Therefore, super-observations d̂ for each model
grid cell are created from observations d
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where d̂ and V̂

d

are the grid-scale super-observation and
its uncertainty, and â

h

and â

p

are the grid-scale fractional
hgt and pft areas of the super-observation. By use of the
weighting scheme w

o

super-observations contain the highest
quality satellite data within each grid cell.

The observation operator HA is created by linearly ag-
gregating modeled FPAR and LAI weighted by observed
elevation distribution â

h

and pft distribution â

p

for each
super-observation:
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where x = [FPAR, LAI] is predicted by the prognostic
phenology model. Ensemble perturbations HA0 are rescaled
with the state variance because the weighed addition of en-
semble members by definition deflates the ensemble variance
when not all weights are equal.

Aa is calculated by use of the square root implementation
of the EnKF scheme as presented in Evensen [2004] (Sec-
tion 7.3, equations 69-93) using the low-rank pseudo-inverse
calculation because the observation count in our analysis
will always exceed the ensemble size. Over-dispersal, over-
confidence and non-physical drift of the posterior state and
parameter ensemble is taken care of by applying:
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a
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where ↵ = 1.0 is the upper limit for the ensemble disper-
sal, relative to the prior ensemble variance, � = 0.1 is the
lower limit for the ensemble shrinkage, relative to the prior
ensemble variance, and A

min

and A
max

are the lower and
upper bounds for the ensemble mean as given in Table 1. It
is important to note that the latter physical limits do only
move the ensemble mean without modifying the ensemble
variance.

Aa is a global solution that updates all local states and
parameters with a single global analysis. This is needed to
estimate a single global set of parameters. The presented
assimilation scheme can also be used for state estimation.
Each local analysis then uses a spatial influence function
that updates only states close to the observations. Such a
local analysis for state estimation could follow the global
analysis for parameter estimation as for instance outlined
by equations 80 and 81 in Evensen [2003].

2.3. Data
2.3.1. Meteorological Forcing Data

Daily minimum temperature T

m

, daily mean global ra-
diation R

g

and daily mean vapor pressure deficit vpd serve
as forcing weather data for the prognostic phenology model.
1�x1� gridded ECMWF ERA 40 [Uppala et al., 2005] are
used during 1958-1989 and ERA Interim [Berrisford et al.,
2009] are used during 1990-2006. The ensemble members of
T

m

, R

g

and vpd are stochastically perturbed at each grid
point and at each time step with a variance of 0.025 K, 1.0
W m�2 and 0.005 mb, respectively.

The grid-scale 1�x1� ERA 40 and ERA Interim data are
the starting value for calculating T

m

, vpd and R

g

for each
subgrid-scale elevation class. Subgrid-scale T

m

is derived
from grid-scale T

m

by use of a lapse rate of �0.6 K 100
m�1; subgrid-scale vpd is calculated by keeping the mixing
ratio constant with height and applying the subgrid-scale
T

m

to the vpd calculation. Subgrid-scale R

g

increases by
0.3 W m�2 100 m�1 (mainly due to decreased atmospheric
optical thickness at greater elevation). The local-scale ex-
periments carried out at the four FLUXNET sites are driven
by the grid-scale 1�x1� ERA 40 and ERA Interim weather
forcing downscaled to the single elevation class of the re-
spective FLUXNET site.

2.3.2. Satellite Observation Data
TERRA MODIS FPAR and LAI (MOD15A2, Collection

5, Myneni et al. [2002]) fill the observation vector d in the
assimilation experiments. They are also used as compar-
ison data in the results section. Observations are quality
screened and used only if their values are inside the valid
range, and if none of the following MOD15A2 quality flag
bits are set:

• FparLai bit 2 (dead detectors)
• FparLai bits 3 or 4 (clouds present or unclear)
• FparLai bit 7 (failed retrieval)
• FparExtra bit 0 or 1 (pixel not on land)
• FparExtra bit 2 (snow or ice)
• FparExtra bit 5 (internal cloud mask)
• FparExtra bit 6 (cloud shadow detected)

Observation uncertainty V

d

for valid observations is cal-
culated by multiplying the minimum uncertainty with the
sum of the “severity factor” s which is then added to the
minimum uncertainty. Minimum uncertainty is defined as
0.05 (-) for FPAR and 1.0 (m2 m�2) for LAI.

• s = 0
• if FparLai bit 0 (back up algorithm) set: s = s + 1
• if FparLai bit 5 (saturated retrieval) set: s = s + 2
• if FparLai bit 6 (empirical method used) set: s = s + 4
• if FparExtra bit 3 (aerosols present) set: s = s + 3
• if FparExtra bit 4 (cirrus clouds detected) set: s = s+8

2.3.3. Elevation Data
The subgrid-scale distribution of elevation classes is de-

rived from the gap-filled CGIAR-CSI SRTM global elevation
dataset version 4 [Jarvis et al., 2008], extended to the po-
lar areas with GTOPO30 elevation data [USGS , 1996]. The
n

hgt

elevation classes are equally distributed over two stan-
dard deviations of the elevation range in the assimilation
area. Elevations below or above the lowest or highest class
are counted to the lowest and highest class, respectively.
The area fraction a

h

for each elevation class is calculated by
grid cell.
2.3.4. Plant Functional Type Data

The subgrid-scale distribution of 35 plant functional type
classes is derived from MOD12Q1 Collection 4 Land Cover
[Friedl et al., 2002], MOD44B Collection 3 Vegetation Con-
tinuous Fields [Hansen et al., 2003], AVHRR Tree Cover
Continuous Fields [Defries et al., 2000], MOD15A2 Collec-
tion 5 [Myneni et al., 2002], global crop data [Le↵ et al.,
2004], global temperature (Version 2.02) and precipitation
(Version 2.01) data [Wilmott and Matsuura, 2007], follow-
ing the method described in Lawrence and Chase [2007] and
Bonan et al. [2002]. The resulting pft dataset contains the
area fraction a

p

for each of the 35 pft’s by grid cell. The
pft processing is described in Appendix A and a list of pft’s
is given in Table 2. In this publication only the 15 natural
pft’s are analyzed even though all 35 pft’s were included in
the data assimilation.

2.4. Experimental Setup

The data assimilation experiments constrain a set of
model parameters. The parameters are then used in global
prediction experiments. Figure 1a displays the geographic
location of the 256 manually selected regions used for the
data assimilation experiments. In order to start where
our previous study has ended, the 4 region selection (red
squares) includes a temperate, mediterranean, boreal and
tropical ecosystem at four FLUXNET sites that are identi-
cal to the ones used in [Stöckli et al., 2008b]. Figure 1b then
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shows how the 256 region selection finally becomes represen-
tative for the full range of climatic conditions needed in a
global prediction. The technical details on both the data as-
similation and the prediction model are given in Appendix
B.
2.4.1. Data Assimilation

The four data assimilation experiments span 4, 16, 64
and 256 regions with 0.5� x 0.5� spatial coverage per region
(subsequently labelled as 4, 16, 64 and 256). Each region
is subdivided into 25 0.1� x 0.1� grid cells, where each grid
cell has a subgrid-scale representation of 10 hgt classes and
35 pft classes. 1000 ensemble members are integrated in
time. Prior model parameters and states are initialized and
perturbed as given in Table 1. The phenology model is inte-
grated for 30 years by cycling the 10 year observation period
(2000-2009) three times. The 8-day MOD15A2 observations
are read at the center of their compositing period (days 4,
12, etc.) since the exact compositing day is not given in the
MOD15A2 dataset. In comparison to Stöckli et al. [2008b]
the EnKF analysis is carried out at the end of each year and
not after each observation period in order to avoid conver-
gence to local minima. This modification further results in
a less over-confined parameter ensemble and is based on the
assumption that a yearly constant set of model parameters
simulates the seasonal variation of vegetation states.
2.4.2. Global Prediction

Global predictions are carried out on a 1� x 1� global
grid with the prior parameter set (subsequently labelled as
“prior”) and with the posterior parameter sets obtained by
the above described data assimilation experiments (subse-
quently labelled as 4, 16, 64 and 256). The integrations
employ 10 ensemble members spanning the parameter un-
certainty and they are integrated forward in time during
1959-2009. 1959 is used as spin-up year. The prognostic
states FPAR and LAI are generally within 1% of their spun-
up values after 3 months. A final 50 year long global “re-
analysis” dataset covers the period 1960-2009 and uses the
256 region parameter set.

3. Results

The data assimilation framework is used to estimate a
new (posterior) set of global phenological parameters that
should yield a better prediction of phenological states. In
this section the prior and posterior parameter uncertainties
are firstly analyzed. Secondly, the e↵ect of the posterior pa-
rameter set on the global, regional and local-scale prediction
of phenological states is evaluated.

3.1. Global Parameter Estimation

A total number of 510 empirical model parameters were
estimated (Table 3 – 5). They can be separated into 6 cli-
mate control parameters, 6 structural parameters and 3 time
averaging parameters that are estimated for each of the 15
natural pft’s (the water pft and the 19 crop pft parameters
are excluded from the analysis).
3.1.1. Climate Control Parameters

The climate control parameters given in Table 3 serve as
environmental triggers that primarily determine leaf onset
and senescence. The data assimilation is able to reduce the
posterior uncertainty to < 30% of the prior uncertainty (the
latter is the square root of the initial parameter variances
found in Table 1) for 82% of the temperature, 76% of the
moisture and 72% of the light control parameters respec-
tively. Table 3 reveals negative values for the light control
parameter L

min

. This seems unphysical since the meteoro-
logical forcing R

g

cannot become negative. The employed
phenology model is highly empirical without real physical

constraints. The negative L

min

values thus allow the ever-
green needleleaf species to keep needles and therefore main-
tain LAI during winter when light can be absent especially
in boreal regions.
3.1.2. Structural Parameters

Structural parameters are given in Table 4. They de-
termine the upper and lower bounds of the leaf state. For
tropical evergreen broadleaf forests, the FPAR

max

(the up-
per bound of FPAR) is better constrained than FPAR

min

since a total absence of leaves can hardly ever be observed.
The lowest FPAR values can further be contaminated by
clouds and aerosols and get a larger observation error by
the employed observation quality screening method. The
EnKF then creates larger posterior parameter uncertainties
when few observations concur with larger observation errors.
The EnKF estimates each parameter independently from
the others. The bare soil FPAR

max

(0.05) for instance has
a lower posterior estimate than the FPAR

min

(0.11). The
prediction of bare soil FPAR will therefore have no seasonal
cycle. The predicted FPAR will remain at FPAR

max

. The
posterior uncertainty of FPAR

max

and LAI
sat

is well be-
low 5% of the prior parameter uncertainty for several boreal
and temperate pft’s such as temperate deciduous broadleaf
forest, boreal evergreen needleleaf forests or not-arctic grass-
lands. Leaf growth rate �

g

values are higher than the leaf
decay rate �

d

for most pft’s. Leaf onset is a faster process
than leaf senescence for most natural species. Posterior un-
certainties of both �

g

and �

d

are between 10-20% of their
initial uncertainty.
3.1.3. Time Averaging Parameters

Time averaging parameters are given in Table 5. The
posterior uncertainties for the time averaging parameters is
in the range of 20-50% compared to the prior uncertainty.
Jolly et al. [2005] use 21 days for these parameters, which
was our initial (prior) value. For the temperate deciduous
broadleaf forest pft the averaging times needed for temper-
ature and light decreases from 21 to 5.5 days and from 21 to
15.4 days respectively while the time averaging needed for
moisture increases from 21 to 33.7 days.

3.2. Global Prediction

A 50 year long FPAR and LAI reanalysis dataset is gen-
erated by running the prognostic phenology model with the
256 region parameter set over the whole ERA Interim and
ERA 40 period (1960-2009). The prior and posterior global
FPAR and LAI prediction uncertainties and errors are an-
alyzed in this sub-section. The prediction uncertainty is
caused by the model’s parameter uncertainty. It can be cal-
culated as the ensemble variance of the predicted FPAR and
LAI. The prediction error on the other hand is defined as
the mean absolute deviation (MAD) between the ensemble
mean of predicted FPAR and LAI and the quality screened
observations (2000-2009).

Figure 2a summarizes the mean leaf state and its sea-
sonal variability for the 50 year long reanalysis dataset. It
shows that highest annual mean LAI of above 5 m2 m�2

is found in tropical climates and the largest seasonal LAI
amplitude (contour lines in Figure 2a) occurs in subtrop-
ical and temperate climate zones. Figure 2b) shows that
northern hemisphere temperate climate zones green up dur-
ing April and May while northern hemisphere Boreal and
Arctic climate zones green up during May and June.

Figure 3 visualizes that the highest prediction errors with
the prior parameter set occur in sub-tropical, mediterranean
and temperate areas. The prior mean absolute deviation
(MAD) of predicted versus observed LAI is in the order of
3.0 m2 m�2 for these regions. The MAD of LAI decreases to
below 1.5 m2 m�2 in the 4 region experiment. The largest
improvements between the 4 and the 256 region experiments
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are confined to crop-intensive areas such as India, Central
USA and Europe, but also semi-arid areas such as the Sahel
in Africa and Central Australia.

Figure 4 displays the evolution of the global mean pre-
diction error and prediction uncertainty with the increas-
ing number of assimilated observations. The global LAI
and FPAR prediction error (solid lines) successively de-
creases with the increasing number of assimilated obser-
vations. More than 50% of the prior prediction error is
removed by the 4 region experiment, while the 256 region
experiment further reduces the global FPAR and LAI pre-
diction error to 20.6% and 14.8% of the prior prediction er-
ror, respectively. The prediction uncertainties (dashed lines
in Figure 4 and Table 6 ) decrease to 3.4% and 3.9% of their
prior values (0.326 and 2.79 m2 m�2) for FPAR and LAI.
Already the 4 region experiment covering only 0.007% of
the global land area reduces FPAR and LAI uncertainty to
17.8% and 16.1% of their prior uncertainty.

Figure 4 also reveals that the prediction error decreases
less rapidly than the prediction uncertainty (solid versus
dashed lines). The model ensemble members converge
slightly faster than expected from the remaining model-
observation di↵erences. Parameter and state covariance un-
derestimation is a common feature in ensemble data assimi-
lation [Li et al., 2009]. In our experiments it happens despite
the employed ensemble inflation (equation 36) and despite
the large number of chosen ensemble members.

3.3. Regional Prediction

The global land area is screened by pft class, where only
grid points with at least 25% coverage for a given pft are
included in each respective area. In Figure 5 Taylor dia-
grams [Taylor , 2001] document the statistical performance
of FPAR and LAI predictions by simultaneously drawing the
correlation coe�cient R between the model and the observa-
tions and the normalized standard deviation (the standard
deviation of the model divided by the standard deviation of
the observation). Table 7 provides the mean bias (bias) and
root mean square error (rmse) values for each pft.

The temperate deciduous broadleaf forest (pft class 8)
FPAR and LAI predictions in the 256 region experiment
have a high R > 0.98 but slightly underestimate phenolog-
ical variability when compared to observations (normalized
standard deviation < 1). Bias and rmse for both FPAR
and LAI substantially decrease (rmse to around 30% of its
prior value and the bias in LAI from > 1 m2 m�2 to -0.09
m2 m�2, Table 7). For this pft it would be interesting to
evaluate the inter-annual variability of the spring leaf-out
date. However, while the modeled FPAR and LAI output is
daily, the spring date cannot be accurately diagnosed from
the MODIS observations since they have a 8 day composit-
ing period (and the actual compositing day is not given in
the data). The boreal evergreen needleleaf forest (pft class
3) LAI in the 256 region experiment reaches a very high pre-
diction accuracy with R= 0.97, a bias of 0.03 m2 m�2 and a
rmse value which is < 15% of its prior value. A similar gain
in accuracy is achieved for the boreal deciduous needleleaf
forest (pft class 4) and for the arctic c3 grass (pft class 13).

Figure 5 demonstrates that the prediction using the prior
parameters generally overestimates phenological variability
for most pft’s (normalized standard deviation > 1) and the
highest R values are at 0.9. In the 256 region experiment
most pft’s cluster in the same “high prediction accuracy”
area and the highest R values reach 0.99. The 256 region ex-
periment slightly underestimates phenological variability for

most pft’s, which might be a result of residual observation
noise (and thus exaggerated observation variability) despite
of the employed restrictive quality screening. The correla-
tion coe�cient R of evergreen species such as the tropical
and temperate evergreen broadleaf forest (pft classes 5 and
6) or the evergreen broadleaf shrub (pft class 10) remains
low for both FPAR and LAI in the 256 region experiment.
However, their bias and rmse values substantially improve.
Correlation is not a suitable statistical means in the case
of time series with almost constant (evergreen) values. The
bias and rmse values given in Table 7 clearly demonstrate
that both magnitude (bias) and phase (rmse) significantly
gain in realism. Bold values document that for all pft’s the
FPAR and LAI biases fall below 5% of the FPAR and LAI
range, while most rmse values reach this threshold in the
256 region experiment.

3.4. Local Prediction

Any scientific application that is applied to global scales
should be re-evaluated at the local scale if possible in or-
der to gain a better process-based understanding and reveal
missing model components (as an example see Stöckli et al.
[2008a]; Oleson et al. [2008]). The phenology model using
the global parameter set has therefore been tested at the
same four FLUXNET tower sites as in our local-scale data
assimilation study [Stöckli et al., 2008b]. The aim of this
section is to evaluate to what degree the model using the
above estimated global parameter set is still able to repre-
sent local-scale phenology at specific sites.

3.4.1. Morgan Monroe State Forest
The Morgan Monroe State Forest site (USA) is a temper-

ate deciduous forest interleaved by grassland and crops. The
site-level simulation and the 4 region experiment simulate a
realistic seasonal cycle (Figure 6a). The 4 region experiment
should always be closer to the site-level experiment than for
instance the 256 region experiment since the former uses pa-
rameters that are constrained over exactly the four regions
covering the four sites, where the latter uses parameters that
minimize the prediction error for a global area. A two-stage
green-up successively appears in the 16, 64 and 256 region
experiments. This two-stage green-up is likely due to a un-
realistic green-up timing of non-natural pft’s present in this
grid-cell. The pft parameters for maize (14% of the area)
and soy (12% of the area) are constrained with information
from globally distributed croplands by the 16, 64 and 256
region experiments, but their values do not seem to be valid
at this particular site or for this particular year. The em-
ployed static pft map would firstly not be suitable in areas
where crop rotation is practiced, and secondly a crop phe-
nology model might be required to realistically simulate the
phenological stages of di↵erent crops in a global prediction.
Senescence is realistic in the 4, 16, 64 and 256 region exper-
iments but is delayed in the site-level experiment. The 64
and 256 region experiments further reveal a underestimation
of summer LAI magnitude. It might be related to the neg-
ative bias of the temperate deciduous broadleaf forest LAI
prediction found in the regional analysis above (Table 7).
3.4.2. BOREAS Old Black Spruce

The high prediction skill at the boreal forest site
BOREAS Old Black Spruce (Canada) appears to be inde-
pendent of whether a site-level or global parameter set is
used (Figure 6b). This result firstly demonstrates that the
regions where boreal evergreen needleleaf forest occur are
spatially more homogeneous than for instance the patchy
landscapes encountered in temperate climate zones. The
pft distribution at BOREAS for instance consists of around
50% evergreen needleleaf trees, 20% deciduous shrubs and
20% arctic grasslands. Secondly, phenological timing for this
pft is controlled by a well defined set of environmental trig-
gers (defined by the climate control parameters in Table 3)
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that are valid from local to global scales. This result is un-
derlined by the high prediction performance of the boreal
evergreen needleleaf forest pft found in the regional analysis
above.
3.4.3. Santarem KM83

The prior parameter set at the tropical evergreen
broadleaf site Santarem KM83 (Brazil) creates a unrealis-
tic light-limited leaf loss of around 2 m2 m�2 at the end of
the wet season (April - June) while both quality screened ob-
servations and all posterior parameter sets show a constant
LAI throughout the year. Figure 6c demonstrates that the
employed observation quality control is working well and
that cloud a↵ected (wet season) and aerosol contaminated
(dry season) observations at the site are properly screened
and do not a↵ect the data assimilation process.
3.4.4. Tonzi Ranch

Although the Tonzi site (USA) has the same mean
monthly precipitation and mean temperature as Morgan
Monroe State Forest (the two red boxes that coincide in
the center of Figure 1b), it is a mediterranean savanna-type
ecosystem with a rather dry late summer and a wet winter
season. Figure 6d shows that the magnitude but also the
timing of the drought response between May and Septem-
ber (see also Figures 3 and 4 in Stöckli et al. [2008b]) are
simulated very realistically by the site-level and the 4 region
experiments compared to the prior experiment. The timing
is still accurate in the 16, 64 and 256 region experiments,
but the peak LAI during April and May is severely under-
estimated in the 16, 64 and 256 region experiments. The
result demonstrates that global parameter sets can become
inaccurate at the local scale for ecosystems with a complex
canopy. The site-level experiment yields July/August LAI
values that are comparable to ground measurements [Ryu
et al., 2010b]. However, our simplified canopy radiative
transfer neglects the contribution of vegetation structural
aspects like leaf clumping while ground measurements of-
ten neglect the contribution of the understory LAI that is
also measured by the satellite. Currently the comparison
of satellite- and ground-observed phenology is best achieved
through the analysis of phenological timing [Studer et al.,
2007; Stöckli et al., 2008b; Liang et al., 2011]. Newly devel-
oped near-surface remote sensing methods are promising to
also compare phenological magnitude [Ahrends et al., 2008;
Richardson et al., 2009; Ryu et al., 2010a].

4. Discussion
4.1. Data Assimilation

By running the data assimilation over less than 1% of
the global land surface the global FPAR and LAI predic-
tion error could be reduced to below 20% of its initial value.
The key for this success is most likely the wide climatic and
biogeographic range spanned by the chosen subset of assim-
ilation regions (Figure 1). The 4 region experiment already
includes a tropical, a temperate, a boreal and a mediter-
ranean climatic environment to constrain a set of parame-
ters that then show substantial skill in a global prediction
(Figure 3). Figure 4 suggests that little improvement can
be expected when extending the assimilation area beyond
the 0.4% of global land area covered by the 256 region ex-
periment. Research on the optimal location of assimilation
regions might further reduce the computational resources
needed for a global data assimilation of vegetation phenol-
ogy.

The parameter uncertainties seem to converge much
faster than the prediction errors. While the EnKF allows in
theory a perfect estimation of the combined posterior model
and parameter error by analysis of both the prior model un-
certainty and the observation uncertainty, there are many
assumptions to be made for the practical implementation
of the EnKF in a prediction system. Each of the following
assumptions could be the cause for the observed parameter
overconfidence:

• Ensemble size: the ensemble size N for the EnKF
should be as large as possible since the sampling error de-
creases by 1/

p
N . 1000 ensemble members are likely too low

since around 10000 states and 510 parameters are estimated
for each region. With the available computational resources
for this project there is little that can be done regarding
ensemble size.

• Measurement size: if the measurement size exceeds the
ensemble size, rank problems can occur because the mea-
surement error covariance needs to be compressed into the
ensemble space. We however make use of the inversion pre-
sented in Evensen [2004] that uses a measurement operator
covering the full-rank of measurements to avoid the problem
of rank-loss reported in the literature [Kepert , 2004].

• Measurement uncertainty: if the measurement uncer-
tainty is poorly chosen in a bayesian method, the posterior
model uncertainty will likely be wrong. The measurement
uncertainty is derived from MODIS quality flags that are
themselves based on semi-empirical detection algorithms for
clouds, shadows, aerosols and reflect an incomplete set of re-
trieval errors [Justice et al., 2002]. Further, arbitrary scaling
factors are used to transfer the quality flags into a quantita-
tive set of observation uncertainties. The super-observations
derived in equation 29 neglects any spatially correlated mea-
surement errors that are likely to happen with cloud contam-
ination or snow cover.

• Local minima: the EnKF solver is chosen to avoid lo-
cal minima since the full non-linear prediction model is in-
tegrated without the need to create first order derivatives
as needed for instance in the Extended Kalman Filter or in
variational data assimilation techniques like 3D or 4D VAR.
A yearly analysis guarantees that parameters do not satisfy
individual observations but are consistent with the entire
seasonal cycle of the leaf state.

• Equifinality: by estimating a set of 15 parameters for
a total of 34 pft’s several solutions in the parameter space
might produce a similar prediction. However, even though
equifinality might generate wrong parameters it should to
the best of our knowledge not lead to parameter overconfi-
dence.

4.2. Phenology Model

We chose a rather empirical phenology model with a large
set of climate control parameters, structural vegetation pa-
rameters and time averaging parameters.

It was demonstrated how both climate control and struc-
tural vegetation parameters can be thoroughly constrained
by the 10 years of MODIS data while time averaging param-
eters are left with a substantial posterior uncertainty. There
is nevertheless evidence that the time averaging needed for
temperature and light are likely shorter than 21 days and
the averaging time for moisture is higher than 21 days. This
result contrasts most temperature-based phenology models
that work with growing degree days since they often in-
tegrate temperature history over several months [Chuine,
2000]. The long averaging time for moisture further demon-
strate that tall trees in temperate climate zones can sus-
tain greenness for prolonged periods of droughts. For short
natural vegetation like grasslands and deciduous shrubs the
moisture averaging times result well below 21 days, most
likely related to their short rooting depths and higher sus-
ceptibility to drought.
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The tropical evergreen broadleaf forest pft requires the
longest moisture averaging times. Our model yields a sea-
sonally largely constant FPAR and LAI for this pft. Trop-
ical trees are known to be resistant to the yearly recur-
ring dry periods [Lee et al., 2005]. Recent studies however
demonstrate that tropical plant physiology and phenology
is very complex and both can sensitive to extreme drought
periods [Saleska et al., 2007; Myneni et al., 2007; Phillips
et al., 2009; Zhao and Running , 2010]. These studies are
based on satellite-based EVI, modeled GPP or on field mea-
surements of biochemical fluxes and carbon stocks and not
on satellite-based FPAR or LAI. Further, drought-induced
changes in tropical phenology may not be detectable with
spectro-radiometers like MODIS but only with hyperspec-
tral radiometers like Hyperion [Asner et al., 2004]. These
open questions should motivate follow-up research in both
modeling and observation of tropical phenology.

Our model entirely depends on a multiplicative set of lin-
earized and time integrated temperature, light and moisture
controls. The model therefore excludes several known bio-
physical and abiotic controls such as chilling requirements,
insect pests, harvest, irrigation, nutrient limitations, tree ag-
ing, biodiversity e↵ects or frost events. The high prediction
skill on the seasonal and inter-annual time scale spanning
local to global spatial scales demonstrates that the main
drivers of phenological variability have been included in the
model. However, the short observation period of 10 years
by definition excludes most climatological extreme events
required to exploit the full range seasonal to decadal pheno-
logical variability. Especially the climate control parameters
of sub-tropical and tropical drought-deciduous pft’s might
benefit from a longer observation period.

Plant physiological research suggests that bud burst of
temperate deciduous species is driven by photoperiod (but
not necessarily the light intensity R

g

as used in this study).
Photoperiod can serve as trigger for temperature sensitiv-
ity [Körner , 2006]. Our results demonstrate that the best
empirical prediction of temperate deciduous broadleaf for-
est phenology is simulated by a combined temperature-light
forcing. Figure 4a) of Stöckli et al. [2008b] visualizes that a
light trigger (green curve, X symbols) precedes the temper-
ature trigger (red curve, star symbols). However, it is cur-
rently debated whether light, temperature or both control
bud burst. These relationships also vary by species [Körner
and Basler , 2010] and cannot be generalized [Cleland et al.,
2007].

4.3. Plant Functional Type Data

Plant functional types [Bonan et al., 2002] are chosen in-
stead of the often used biomes or land cover classes [Hansen
et al., 2000] because they are better in line with the sepa-
ration needed for phenological predictions. The single sa-
vanna biome at for instance the Tonzi Ranch is composed
of a evergreen broadleaf tree pft (with maximum LAI in
late summer) and of a drought-deciduous c3 grass pft (with
maximum LAI in early spring). Both pft’s display a very dif-
ferent phenological cycle and there is no single parameter set
that would enable a realistic simulation of the single savanna
biome. The regional analysis however suggests that several
pft classes like the temperate deciduous broadleaf forest pft,
the evergreen broadleaf shrub pft or the temperate decidu-
ous broadleaf shrub pft might still be too heterogeneous in
terms of phenological behavior and could be separated into
sub-pft classes. Phenological predictions would surely ben-
efit from consistent global pft maps based on new remote
sensing technologies as for instance presented in Ustin and
Gamon [2010].

The focus of this study is the estimation of phenology
parameters for natural vegetation. However, crop pft’s were

also included in the data assimilation. Satellite pixels con-
tain a mixed signal from both natural and managed veg-
etation that needs to be decomposed in order to estimate
parameters for the natural vegetation pft’s. Figure 3 demon-
strates that the FPAR and LAI of regions with heavy crop
cover are well predicted without the explicit use of a crop
phenology model. This shows that even managed vegeta-
tion phenology is dominantly weather and climate driven.
However, for climate model applications a dedicated crop
phenology model should be used since especially the car-
bon uptake of crops di↵ers from natural vegetation [Gervois
et al., 2004; Lokupitiya et al., 2009].

4.4. Satellite Data

The MODIS FPAR and LAI data are derived from
MODIS surface reflectances by inversion of a canopy ra-
diative transfer model [Myneni et al., 1999, 2002]. They are
more accurate in low biomass areas and generally exagger-
ate LAI for broadleaf and needleleaf forests [Wang et al.,
2004; Cohen et al., 2006]. The LAI retrieval from visible
and near-infrared surface reflectances is underdetermined
for intermediate and high LAI values which can yield errors
in the order of 50% [Garrigues et al., 2008]. The FPAR
and LAI dataset presented in this study will inherit such
errors. We further use a very simplified representation of
the canopy light interception that only fits 4 canopy struc-
tural parameters per pft (FPAR

min

, FPAR
max

, FPAR
sat

and LAI
max

). Compared to the MODIS retrieval algorithm
it does not include the e↵ects of foliage and canopy clump-
ing, non-green canopy elements, soil background reflectance,
shading or vertical canopy structure [Myneni et al., 1999;
Shabanov et al., 2003]. These di↵erences can introduce in-
consistencies between the assimilated and predicted FPAR
and LAI values. They might be responsible for some of the
scaling issues found at Morgan Monroe and Tonzi Ranch.

The restrictive quality screening of MODIS observations
employed in this study eliminates the majority of cloud,
aerosol, snow and cloud shadow contamination that usu-
ally complicates the generation of climate quality biophys-
ical satellite parameters in tropical or high latitude [Los
et al., 2000; Poulter and Cramer , 2009]. On the global av-
erage 40-50% of all valid observations pass quality screen-
ing (Table 6). In tropical areas only 5-10% (not shown)
pass the quality screening. Neglecting quality screening can
for instance lead to misleading conclusions on the drought-
response of tropical trees [Saleska et al., 2007] as shown by
Samanta et al. [2010].

Remote sensing data assimilation in combination with
a predictive model has the capability to complement the
classical data-only gap filling procedures such as maximum
value compositing or fourier time series fitting employed in
most current satellite-based land surface datasets [Los et al.,
2000; Jonsson and Eklundh, 2002; Stöckli and Vidale, 2004;
Tucker et al., 2005; Fang et al., 2008].

4.5. Weather Forcing Data

The model parameter set and therefore the phenological
prediction will be sensitive to the choice of weather forcing
data since predicted states are empirically and not mecha-
nistically linked to the meteorological predictors. Potential
biases in the ECMWF ERA Interim data might therefore
have created unrealistic posterior parameter sets during the
data assimilation. We have perturbed the weather forcing
data with uncertainties as given in the methods section, but
the perturbation does not correct for biases in the weather
forcing data. Also, a new estimation of model parameters
might be required if a new weather forcing data with a dif-
ferent spatial scale or with a di↵erent climatology is used or
if the phenology model is applied in coupled mode as part
of a climate model.
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5. Conclusions and Outlook

Our study demonstrates how remote sensing data assimi-
lation can be used to reduce uncertainties in a global phenol-
ogy model. The assimilation of MODIS data covering less
than 1% of the global land surface successfully reduced the
global FPAR and LAI prediction errors to 20.6% and 14.8%
of their respective prior errors. A too high variance reduc-
tion in the posterior parameter set could be mitigated by
use of a more quantitative observation uncertainty estima-
tion. Novel data assimilation methods such as the Maximum
Likelihood Ensemble Filter MLEF [Zupanski , 2005] employ-
ing Hessian preconditioning and a gradient search method
might yield more realistic globally applicable parameter sets.

Our study suggests that pft’s are a suitable means to
disaggregate mixed satellite pixels on global scale and they
allow to create a pft-specific parameterization of a globally-
applicable phenology model. The boreal evergreen needle-
leaf forest pft and the tropical evergreen broadleaf forest
pft perform realistically over a large range of spatial scales.
However, local-scale predictions using a global parameter
set can become unreliable in both magnitude and timing as
for instance demonstrated for the mixed natural-agricultural
temperate landscape (Morgan Monroe) and the savanna
landscape (Tonzi Ranch). The phenological data assim-
ilation experiment could now be repeated with a variety
of globally-applicable phenology models and pft datasets.
In order to increase the compatibility between assimilated
and predicted vegetation states the MODIS canopy radia-
tive transfer model could be employed in the prediction
of FPAR and LAI. A more complex treatment of leaf and
canopy clumping, leaf orientation, shadowing or non-green
canopy elements would further broaden the applicability of
our methods and datasets. As a first step global maps of
foliage clumping [Chen et al., 2005; Pisek et al., 2010] could
enhance our simplified LAI calculation with geometric in-
formation on canopy structure.

Our study is a first step to mitigate some deficiencies
of current phenological models. As already shown in Stöckli
et al. [2008b] the parameterized phenology model can be use-
ful to disentangle the influence of meteorological drivers on
the observed phenological variability. It could be a contribu-
tion to the currently ongoing discussion on how temperature
and light (or photoperiod) govern the timing of phenological
spring events [Körner and Basler , 2010]. The 50 year long
global phenological reanalysis dataset (1960-2009) should be
suitable for climate analysis studies. It might for instance
contain evidence on whether the light trigger is the hard
limit for the currently observed (temperature-related) neg-
ative trends for phenological spring events [Cleland et al.,
2007; Rutishauser et al., 2007].

Future research should combine process-based knowl-
edge from hydrology, plant physiology and canopy radia-
tive transfer modeling with the highly empirical world of
plant phenology. This is needed to better understand and
simulate the response of the terrestrial water and carbon
cycle to climate variability and change and to quantify the
resulting impacts on the other earth system components
[Penuelas et al., 2009]. We would therefore like to motivate
earth system modelers to experiment with data assimilation
and to bring forward a new generation of phenology and
land surface models. In order to facilitate this, the pre-
sented dataset, all program codes, parameters, documenta-
tion and simple hands-on experiments are publicly available
on http://phenoanalysis.sourceforge.net.

Appendix A: Plant Functional Type Data
Generation

The following modifications are made to the pft process-
ing by Lawrence and Chase [2007] and Bonan et al. [2002]:

• The single crop class is decomposed into 19 individual
crop classes according to Le↵ et al. [2004].

• This yields 35 pft classes in total: 15 natural types, 19
crop classes and water.

• The processing is performed at 30” spatial resolution
instead of 0.05�.

• The monthly temperature climatology [Wilmott and
Matsuura, 2007] is downscaled to 30” by use of a lapse rate
of 0.5 K 100 m�1 applied to the above described topography
dataset.

• MOD15A2 LAI is quality screened as described above
in order to evaluate the C4 grass fraction. Following Still
et al. [2003] the C4 grass fraction is the sum of LAI for those
months that satisfy the C4 growth criteria (temperature >

22 �C and precipitation > 25 mm) over the sum of LAI for
all months. Since they have used NDVI instead of LAI, we
apply the square-root to the LAI-derived C4 grass fraction
in order to account for the almost exponential relationship
between NDVI and LAI.

• The processing merges 7 sometimes inconsistent
datasets into a single continuous plant functional type cover
dataset. The inconsistencies (e.g. MOD44B indicates 25%
tree cover but the AVHRR VCF shows 0% tree cover)
are overcome by inverse distance filling where the MODIS
dataset served as the reference dataset.

Appendix B: Technical Set Up

The data assimilation framework is parallelized by using
Version 1.2 of the MPI standard [Message P Forum, 1994]
with a 1- or 2-dimensional process topology (multiple regions
and one region per process, or single region distributed along
longitude and latitude range). Model state prediction, I/O,
observation QA screening, gridding of super-observations,
HA and D matrices are calculated on separate processes by
assigning one region per process and one process by logical
CPU unit. The prior parameters are perturbed once and
distributed to all processes in order to end up with a global
analysis parameter set. Model states and weather forcing
are perturbed by process. One process is reserved for the
global analysis, where all regional HA and D are collected
at the end of each simulation year and the global analysis
is performed. The global analysis matrix (X5 in Evensen
[2003]) is finally re-distributed to all processes, where the
computationally intensive final ensemble update of states
and parameters is performed.

The bottlenecks for this framework are its heavy mem-
ory usage, the size of the observational data and the global
EnKF analysis. The parallelization of the EnKF solver
would be an important next step in order to increase data as-
similation performance. The state matrix has 7 dimensions
(ens x lon x lat x pft x hgt x state x days), the parameter
matrix has 3 dimensions (ens x pft x parameter), the forc-
ing data has 5 dimensions (ens x lon x lat x hgt x forcing),
which exceeds per-process memory availability on today’s
supercomputers. In order to increase memory e�ciency, a
subset of hgt and pft classes for states is integrated in each
region, where only hgt and pft classes are selected that cover
more than 2.5% of the area in each region. Water areas (pft
number 35) are screened and not used during the analysis.
Furthermore the upper bound of super-observations to be
used in the global analysis was set to 50000. The analysis
then is within around 1 GB per process (with a maximum
of 4-8 GB per node on e.g. NCCS Discover with 8 cpu’s per
node and 16-32 GB per node on e.g. NCAR Bluefire with
32 CPU’s per node).
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Figure 1. Geographic (a) and climatic (b) distribution
of the regions used for the data assimilation: experiments
with 4 regions (red large squares); 16 regions (red squares
+ blue triangles); 64 regions (red squares + blue trian-
gles + green diamonds); 256 regions (red squares + blue
triangles + green diamonds + violet circles). The colors
of the climatic distribution (b) qualitatively show the rel-
ative probability of occurence for the given climatic zone
(bright yellow: low probability; dark red: high probabil-
ity)
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Figure 4. Relationship between the global FPAR and
LAI prediction error (blue and red solid lines) and predic-
tion uncertainty (blue and red dashed lines) respectively
and the number of observations in the assimilation ex-
periments using 4, 16, 64 and 256 regions.
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Figure 5. Performance of regional FPAR and LAI pre-
dictions by pft with the prior parameter set and the pa-
rameters constrained by the 256 region experiment. Mod-
eled FPAR and LAI have triangle symbols when they
match observations accurately (both bias and rmse < 5%
of FPAR and LAI range according to Table 7).
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Figure 6. Predicted versus observed site-level (0.5� x
0.5�) LAI using the site-level, the prior parameter set
and the parameter sets constrained by 4, 16, 64 and 256
regions during 2003.
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Table 1. State and parameter vector  , initial values  0,
initial variances V 0

 

, minimum and maximum bounds for the
ensemble mean.

No. variable  

0
V

0
 

min max units

states x

1 FPAR 0.5 0.5 0.0 1.0 -
2 LAI 2.5 1.0 0 10 m2 m�2

3 T 0.25 200 350 K
4 L 10 0 1000 W m�2

5 W 0.01 0 100 mb

parameters ✓

6 T

max

280 50 100 350 K
7 T

min

265 50 100 350 K
8 L

max

150 1000 -100 500 W m�2

9 L

min

50 1000 -100 500 W m�2

10 W

max

30 50 -25 50 mb
11 W

min

10 50 -25 50 mb
12 FPAR

min

0.05 0.01 0.0 1.0 -
13 FPAR

max

0.95 0.01 0.0 1.0 -
14 �

g

0.33 0.01 0.05 1.0 days�1

15 �

d

0.33 0.01 0.05 1.0 days�1

16 LAI
max

7.0 0.5 0 10 m2 m�2

17 FPAR
sat

0.95 0.01 0.5 1.0 -
18 ⌧

T

21 10 5 100 days
19 ⌧

W

21 10 5 100 days
20 ⌧

L

21 10 5 100 days

Table 2. List of pft’s including their abbreviations. Only the pft’s of natural vegetation types are given.

No pft name pft abbreviation

1 Bare Soil, Rock, Ice, Permanent Snow bar all
2 Trees: Temperate Evergreen Needleleaf enf tem
3 Trees: Boreal Evergreen Needleleaf enf bor
4 Trees: Boreal Deciduous Needleleaf dnf bor
5 Trees: Tropical Evergreen Broadleaf ebf tro
6 Trees: Temperate Evergreen Broadleaf ebf tem
7 Trees: Tropical Deciduous Broadleaf dbf tro
8 Trees: Temperate Deciduous Broadleaf dbf tem
9 Trees: Boreal Deciduous Broadleaf dbf bor
10 Shrubs: Evergreen Broadleaf ebs all
11 Shrubs: Temperate Deciduous Broadleaf dbs tem
12 Shrubs: Boreal Deciduous Broadleaf dbs bor
13 Grass: Arctic C3 c3g arc
14 Grass: Non-arctic C3 c3g nar
15 Grass: C4 c4g all
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Table 3. Climate control parameters (mean and standard
deviation) by pft constrained by the assimilation using 256
regions. pft abbreviations are explained in Table 2.

No. pft T

min

T

max

W

min

W

max

L

min

L

max

K K mb mb W m�2 W m�2

1 bar all 270.6 ± 0.7 290.9 ± 0.8 12.5 ± 0.7 23.6 ± 0.4 102.7 ± 10.3 149.4 ± 6.5
2 enf tem 263.1 ± 0.5 276.4 ± 0.3 6.9 ± 0.3 47.9 ± 1.3 -68.3 ± 7.3 216.7 ± 2.5
3 enf bor 263.8 ± 0.6 290.0 ± 0.7 7.6 ± 0.4 21.4 ± 2.4 -82.8 ± 10.0 197.4 ± 4.4
4 dnf bor 262.2 ± 0.9 275.6 ± 0.7 18.8 ± 3.0 27.9 ± 3.8 103.9 ± 5.9 208.0 ± 2.7
5 ebf tro 271.3 ± 1.8 292.8 ± 0.3 21.9 ± 0.6 -1.4 ± 2.2 82.3 ± 9.4 168.9 ± 2.6
6 ebf tem 259.1 ± 1.0 285.9 ± 0.3 10.1 ± 0.4 20.9 ± 3.0 14.1 ± 10.7 35.0 ± 6.0
7 dbf tro 278.0 ± 0.4 299.1 ± 0.1 9.9 ± 0.2 43.9 ± 0.6 44.0 ± 13.8 81.4 ± 7.6
8 dbf tem 269.7 ± 0.3 291.5 ± 0.2 5.1 ± 0.2 25.4 ± 0.3 44.3 ± 3.9 203.0 ± 1.8
9 dbf bor 271.0 ± 0.6 279.8 ± 0.3 7.0 ± 1.0 46.9 ± 3.5 110.1 ± 3.7 223.4 ± 2.2
10 ebs all 265.5 ± 2.2 281.7 ± 0.8 3.4 ± 0.7 14.4 ± 0.4 -7.0 ± 7.1 242.4 ± 6.0
11 dbs tem 256.9 ± 0.6 298.0 ± 0.2 1.6 ± 0.4 44.5 ± 0.5 -4.7 ± 9.2 69.3 ± 3.8
12 dbs bor 273.5 ± 0.3 287.8 ± 0.5 17.5 ± 1.0 11.7 ± 2.9 60.8 ± 11.2 68.0 ± 8.1
13 c3g arc 267.8 ± 0.4 282.0 ± 0.4 2.3 ± 0.3 13.5 ± 0.5 19.9 ± 7.1 198.2 ± 3.2
14 c3g nar 267.1 ± 0.2 298.2 ± 0.5 1.5 ± 0.2 15.4 ± 0.1 -21.4 ± 6.6 63.0 ± 3.3
15 c4g all 268.6 ± 0.4 279.2 ± 0.3 4.1 ± 0.2 23.3 ± 0.2 -9.0 ± 5.1 217.7 ± 1.4

Table 4. Structural parameters (mean and standard devia-
tion) by pft constrained by the assimilation using 256 regions.
pft abbreviations are explained in Table 2.

No. pft FPAR
min

FPAR
max

�

g

�

d

LAI
sat

FPAR
sat

- - days�1 days�1 m2 m�2 -

1 bar all 0.11 ± 0.00 0.05 ± 0.00 0.19 ± 0.03 0.05 ± 0.01 9.70 ± 0.31 1.00 ± 0.01
2 enf tem 0.52 ± 0.01 0.98 ± 0.00 0.19 ± 0.02 0.19 ± 0.02 5.93 ± 0.25 0.98 ± 0.00
3 enf bor 0.52 ± 0.01 1.00 ± 0.01 0.34 ± 0.03 0.39 ± 0.04 6.23 ± 0.28 0.98 ± 0.00
4 dnf bor 0.33 ± 0.02 1.00 ± 0.00 0.49 ± 0.04 0.37 ± 0.04 6.69 ± 0.28 1.00 ± 0.00
5 ebf tro 0.16 ± 0.04 0.99 ± 0.00 0.57 ± 0.05 0.05 ± 0.01 7.07 ± 0.02 0.93 ± 0.01
6 ebf tem 0.01 ± 0.03 1.00 ± 0.01 0.45 ± 0.04 0.05 ± 0.00 6.91 ± 0.07 0.96 ± 0.00
7 dbf tro 0.27 ± 0.01 1.00 ± 0.01 0.37 ± 0.03 0.21 ± 0.02 6.85 ± 0.07 0.93 ± 0.00
8 dbf tem 0.29 ± 0.00 1.00 ± 0.01 0.57 ± 0.03 0.42 ± 0.02 6.01 ± 0.12 0.92 ± 0.00
9 dbf bor 0.23 ± 0.01 1.00 ± 0.01 0.60 ± 0.04 0.49 ± 0.04 6.85 ± 0.23 0.94 ± 0.01
10 ebs all 0.39 ± 0.01 0.85 ± 0.02 0.36 ± 0.04 0.31 ± 0.04 6.02 ± 0.31 0.97 ± 0.01
11 dbs tem -0.00 ± 0.01 0.77 ± 0.01 0.49 ± 0.04 0.43 ± 0.03 3.74 ± 0.10 0.84 ± 0.01
12 dbs bor 0.33 ± 0.01 0.84 ± 0.02 0.42 ± 0.03 0.47 ± 0.04 7.50 ± 0.31 0.99 ± 0.00
13 c3g arc 0.12 ± 0.00 0.63 ± 0.01 0.30 ± 0.03 0.15 ± 0.02 6.80 ± 0.27 0.99 ± 0.00
14 c3g nar 0.24 ± 0.00 0.94 ± 0.01 0.47 ± 0.02 0.37 ± 0.02 8.36 ± 0.10 1.00 ± 0.00
15 c4g all 0.19 ± 0.00 0.51 ± 0.00 0.55 ± 0.03 0.13 ± 0.01 7.87 ± 0.31 1.00 ± 0.00
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Table 5. Time averaging parameters (mean and standard
deviation) by pft constrained by the assimilation using 256
regions. pft abbreviations are explained in Table 2.

No. pft ⌧

T

⌧

W

⌧

L

days days days

1 bar all 34.1 ± 1.3 43.0 ± 1.1 21.4 ± 1.5
2 enf tem 25.9 ± 1.1 30.5 ± 1.4 12.2 ± 1.0
3 enf bor 5.3 ± 0.8 19.1 ± 1.6 5.4 ± 1.1
4 dnf bor 17.0 ± 1.3 9.6 ± 1.7 10.7 ± 1.1
5 ebf tro 22.9 ± 1.7 36.1 ± 1.6 5.0 ± 1.2
6 ebf tem 12.4 ± 1.2 13.0 ± 1.6 23.4 ± 1.6
7 dbf tro 21.4 ± 1.0 11.3 ± 0.7 24.1 ± 1.6
8 dbf tem 5.5 ± 0.5 33.7 ± 1.0 15.4 ± 0.8
9 dbf bor 12.9 ± 0.9 17.6 ± 1.6 16.5 ± 1.1
10 ebs all 19.1 ± 1.7 29.1 ± 1.4 13.5 ± 1.2
11 dbs tem 16.4 ± 0.9 10.7 ± 0.6 19.9 ± 1.4
12 dbs bor 5.4 ± 0.6 18.7 ± 1.6 30.9 ± 1.5
13 c3g arc 5.2 ± 0.8 23.8 ± 1.3 25.4 ± 1.2
14 c3g nar 5.0 ± 0.5 18.3 ± 0.6 20.3 ± 1.2
15 c4g all 17.8 ± 1.0 7.2 ± 0.3 27.3 ± 0.9

Table 6. Number and percentage of assimilated observa-
tions (relative to available non-QA screened observations and
relative to total global land area) as well as resulting FPAR
and LAI posterior uncertainties and prediction errors.

Observations FPAR (-) LAI (m2 m�2)
Experiment Number % QA passed % global land uncertainty error uncertainty error

PRIOR 0 0 0 0.326 0.310 2.79 2.29
4 13’943’482 44.8 0.007 0.058 0.143 0.45 0.92
16 50’768’668 42.8 0.025 0.026 0.074 0.17 0.46
64 213’642’410 45.4 0.098 0.015 0.070 0.14 0.41
256 869’605’738 44.7 0.405 0.011 0.065 0.11 0.34

Table 7. Bias and RSME (in brackets) of regional FPAR
and LAI predictions by pft with the prior parameter set and
the parameters constrained by the 256 region experiment. The
accuracy of bold values is better than 5% of the full FPAR or
LAI range (1.0 and 8.0, respectively).

No. pft FPAR LAI
prior 256 prior 256

1 bar all 0.30 (0.31) -0.01 (0.02) 1.62 (1.63) 0.02 (0.04)
2 enf tem 0.02 (0.10) -0.02 (0.03) 0.93 (1.11) -0.17 (0.33)
3 enf bor -0.12 (0.22) 0.00 (0.05) 0.32 (1.14) 0.03 (0.16)
4 dnf bor -0.06 (0.21) 0.00 (0.08) 0.56 (1.32) 0.03 (0.23)
5 ebf tro 0.06 (0.06) 0.01 (0.02) 0.01 (0.23) 0.19 (0.27)
6 ebf tem 0.04 (0.12) 0.00 (0.02) 0.62 (0.93) 0.25 (0.41)
7 dbf tro 0.16 (0.17) 0.00 (0.01) 1.36 (1.39) 0.08 (0.15)
8 dbf tem 0.07 (0.12) -0.03 (0.04) 1.07 (1.26) -0.09 (0.38)
9 dbf bor -0.00 (0.21) -0.00 (0.07) 0.68 (1.39) 0.19 (0.42)
10 ebs all 0.01 (0.16) -0.04 (0.07) 0.79 (1.07) -0.10 (0.27)
11 dbs tem 0.33 (0.33) 0.04 (0.04) 2.14 (2.17) 0.25 (0.26)
12 dbs bor -0.04 (0.18) 0.01 (0.07) 0.61 (1.18) 0.04 (0.15)
13 c3g arc 0.02 (0.13) -0.00 (0.03) 0.76 (1.16) 0.03 (0.09)
14 c3g nar 0.27 (0.28) 0.02 (0.03) 1.95 (1.99) 0.11 (0.13)
15 c4g all 0.26 (0.27) 0.01 (0.02) 2.09 (2.10) 0.10 (0.12)


