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[1] Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2
Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to
2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land
and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated
regional totals and the individual regional estimates are accompanied by a model
uncertainty and model spread. We find that interannual variability is larger on the land
than the ocean, with total land exchange correlated to the timing of both El Niño/Southern
Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative
flux anomaly is evident across much of the tropical and northern extratropical land
regions. In the oceans, the tropics tend to exhibit the greatest level of interannual
variability, while on land, the interannual variability is slightly greater in the tropics and
northern extratropics. The interannual variation in carbon flux estimates aggregated by
land and ocean across latitudinal bands remains consistent across eight different CO2

observing networks. The interannual variation in carbon flux estimates for individual flux
regions remains mostly consistent across the individual observing networks. At all
scales, there is considerable consistency in the interannual variations among the
13 participating model groups. Finally, consistent with other studies using different
techniques, we find a considerable positive net carbon flux anomaly in the tropical land
during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia,
Temperate Asia, Northern African, and Southern Africa land regions. Negative
anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions.
Earlier ENSO events of the 1980s are most evident in southern land positive flux
anomalies.
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1. Introduction

[2] The fate of CO2 emitted into the atmosphere from the
combustion of fossil fuels, industrial processes, changes in
vegetation, and ocean processes remains a topic of active
scientific research, not to mention being of great signifi-
cance to the climate change policy community. Studies
based on observations of atmospheric CO2 combined with
estimates of global fossil/industrial and deforestation emis-
sions have concluded that the land and oceans are removing

roughly half of the anthropogenic CO2 input [Prentice et al.,
2001]. Also evident is the considerable variation in this
uptake from 1 year to the next [Baker et al., 2006]. Though
a number of hypotheses have been suggested to explain the
long-term and interannual variations, direct confirmation of
these mechanisms at the regional to global scale remains
elusive.
[3] The importance of an improved understanding of

carbon exchange has emerged as a key research priority. This
has been underscored by research showing a large spread of
projected future warming when global carbon cycle models
are coupled to simulations of climate change [Friedlingstein
et al., 2006]. While some simulations show the ocean and
land continuing as a carbon sink, others show the biosphere
undergoing dramatic changes. For example, coupled simu-
lations from the Hadley Center in the UK suggest a future in
which the American tropical forests undergo significant
dieback from increased water stress in addition to widespread
oxidation of soil carbon [Cox et al., 2000].
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[4] Efforts to understand the current exchange of carbon
between the land, oceans, and atmosphere have included a
number of observing techniques and simulation approaches.
One approach that has met with increasing use is the
atmospheric inversion approach, in which the spatial and
temporal pattern of atmospheric CO2 observations is used in
combination with simulated atmospheric transport to infer
sources and sinks of CO2 at the surface [Enting, 2002].
[5] In the last two decades, a number of research groups

around the world have carried out atmospheric inversion
experiments in an effort to quantify CO2 sources and sinks
at a variety of spatial and temporal scales. These began with
efforts to estimate the long-term mean exchange at large
scales, and have more recently focused on interannual
variability and attempts to estimate fluxes at smaller scales
[Enting et al., 1995; Fan et al., 1998; Bousquet et al., 2000;
Rayner et al., 1999a; Gurney et al., 2002; Rödenbeck et al.,
2003b; Peylin et al., 2005; Baker et al., 2006]. Though there
is some agreement regarding the hemispheric estimates of
carbon exchange, quantification at the continental and
regional scale remains particularly uncertain. The spread
in the estimates of continental-scale carbon exchange can be
traced to a few aspects of the inverse approach: the paucity
of CO2 observational data and methods for addressing this,
the transport simulation employed, and the inversion con-
ditioning and setup [Engelen et al., 2002].
[6] In the 1990s an experiment was constructed to inter-

compare the many transport models and data used in
atmospheric CO2 inversion studies in an effort to better
understand the sources of uncertainty and potentially arrive
at a consensus view of net carbon uptake in the land and
oceans. The TransCom experiment contained a number of
incremental steps, starting with forward simulations of fossil
fuel CO2, net biosphere exchange, and sulfur hexafluoride.
The most recent phase of the TransCom experiment is the
TransCom 3 effort. TransCom 3 gathered the forward CO2

sensitivities of the participating modeling groups and ex-
plored the uncertainties arising in the inversion process from
the transport, the data and the inversion set-up itself
[Gurney et al., 2000].
[7] A number of papers have been written highlighting

analysis of the TransCom 3 results, including an annual
mean inversion [Gurney et al., 2002, 2003], a cyclo-
stationary or seasonal inversion [Gurney et al., 2004] and
an interannual inversion [Baker et al., 2006]. In addition, a
number of sensitivity studies have been presented, examin-
ing particular aspects of the TransCom atmospheric inver-
sion including data uncertainties [Law et al., 2003],
uncertainties in the fossil fuel CO2 data [Gurney et al.,
2005], extension of the observing network [Patra et al.,
2003], an examination of ocean-only observing networks
[Patra et al., 2006], an exploration of the error terms
[Engelen et al., 2002], and a comparison to vertical profile
observations [Stephens et al., 2007].
[8] The current study builds from the work of Baker et al.

[2006] in which an interannual inversion was performed for
the 1988 to 2003 time period using all of the TransCom 3,
level 2 models. The focus of that study was on the
presentation of a ‘‘control’’ or ‘‘typical’’ inversion setup
and the flux results and the associated model-dependent

uncertainties. Here, we extend the time period of interest to
cover 1980 to 2005, allowing for examination of two
prominent ENSO events in the 1980s. Most importantly,
we build a series of CO2 observing networks for different
subsets of our 27-year time span that progressively contain
larger numbers of observing stations, allowing for constant
observational constraints in the inversion for spans of
different lengths [Rödenbeck et al., 2003b; Peylin et al.,
2005]. The distinct contribution of this work is the ability to
test the sensitivity of station network choices, while ac-
counting for transport uncertainties using a 13 model
portfolio, in determining the net carbon variability of 1 year
to the next.
[9] Section 2 of this paper provides an explanation of our

methods and how the current study differs methodologically
from the work of Baker et al. [2006]. In section 3, we
present the results of the interannual inversion, using on the
mean of the thirteen participating model groups. We present
the interannual variability by detrending and deseasonaliz-
ing the net carbon exchange in each of the 22 regions, and
in grouping the results in a series of progressively larger
regions for which the estimation confidence is greater. Both
types of estimation error generated in the TransCom exper-
iment are included in all results. This section also presents
the estimated carbon exchange given using measurements
from different observing networks spanning different sub-
periods in the 27-year timespan. In section 4 we discuss the
large, coherent cross-network variations, emphasizing the
relationship to the El Niño/Southern Oscillation (ENSO). In
section 5 we summarize these results and point toward
further analysis and the next steps that the TransCom
community is taking to further refine and explore atmo-
spheric CO2 inversion research.

2. Methods
2.1. Formalism and Design

[10] The inversion approach used in this study follows the
Bayesian synthesis method [Tarantola, 1987; Enting, 2002].
The goal of the atmospheric inversion process is to find
the optimal combination of regional surface net carbon
fluxes, S

!
, that best matches observed CO2, D

!
, after those

fluxes have been transported through a model atmosphere
represented by the operator, M. This is most succinctly
represented by the minimization of cost function, J:

J ¼ 1
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where C(D
*
) is the covariance matrix assumed to represent

mismatches between the modeled and observed concentra-

tions, and C(S
*
) is the covariance matrix representing

uncertainties in the prior fluxes. A detailed description of
the formalism employed and references to source material
are given in previous work for the annual mean [Gurney et
al., 2003] and interannual ‘‘control’’ [Baker et al., 2006]
TransCom 3 inversions.
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[11] Details of the experimental design can be similarly
found in the TransCom 3 experimental protocol [Gurney et
al., 2000] and the previous TransCom 3 results [Baker et al.,
2006; Gurney et al., 2003]. The results presented here
follow the inversion set-up outlined in the control interan-
nual inversion [Baker et al., 2006]. The following is a brief
summary.
[12] Thirteen transport models (or model variants) ran a

series of forward CO2 tracer simulations in order to con-
struct model-specific response functions of atmospheric
CO2. The thirteen transports models are described in Baker
et al. [2006] Table 2.
[13] For the interannual inversion experiment presented

here, the forward simulations were run as Green’s functions.
A total of 268 tracers were simulated by each model, four of
which were ‘‘background’’ global fluxes and 264 of which
were region/month fluxes representing a combination of 12
months and the 22 land and ocean regions described in the
annual mean inversion experiment [Gurney et al., 2002].
The prespecified background flux patterns were emitted for
a single year, then discontinued, allowing the CO2 concen-
tration field to decay for the following 2 years of simulation.
The prespecified region/month flux patterns were emitted
for a single month then discontinued for the remainder of
the 3-year simulation.
[14] In order to lower the computational burden for the

participating modeling groups, interannually varying trans-
port was not required. Participants chose a variety of
different annually repeating transport products encompass-
ing reanalyzed winds and GCM transport simulations. The
lack of interannual transport in the forward simulations is an
important consideration in the flux estimation. Four studies
have tested the influence of interannual transport versus
repeated annual transport fields and the results remain
somewhat inconclusive. [Dargaville et al., 2000; Rödenbeck
et al., 2003a; P. Patra, personal communication, April 2005;
Peylin et al., 2005]. When examining latitudinal aggregates
(90–30!S, 30–0!S, 0–30!N, 30–90!N) for fixed versus
interannually-varying winds, Dargaville et al. [2000] found
that the predominant difference was in the flux amplitude as
opposed to the phasing of the interannual variations. By
contrast, Rödenbeck et al. [2003a] found both amplitude
and phase flux differences when comparing interannually
varying winds to a series of fixed-year transport winds,
though the phasing differences were found mostly in the
northern temperate zone (15–50!N). In this region, flux
differences occasionally exceeded 1.0 GtC/year. Finally, the
work of Peylin et al. [2005] indicates that the main impact
of interannually varying winds is on the amplitude as
opposed to the phasing of the carbon flux and these effects
are evident at the regional scale only. As described in Baker
et al. [2006], recent unpublished inverse-estimated fluxes
show small standard errors of roughly 0.2 GtC/year result
from computations run with fixed versus interannually
varying winds [P. Patra, personal communication, April
2005]. However, it is important to note that though each
group used a single year of winds which were repeated
to build the CO2 response functions, many of the modeling
groups employed different repeating calendar years in
their simulations. Thus the spread in the model results

not only reflects different transport algorithms but a mix
of the individual year chosen for the recycled winds.
Nevertheless, the lack of interannually varying transport
must be considered when interpreting the interannual flux
variations.
[15] The four background carbon fluxes consisted of 1990

and 1995 fossil fuel emission fields, an annually-balanced,
seasonal biosphere exchange and air-sea gas exchange
[Andres et al., 1996; Brenkert, 1998; Randerson et al.,
1997; Takahashi et al., 1999]. These fluxes are included
in the inversion with a small prior uncertainty (C(S0

!
) in

equation (1)) so that their magnitude is effectively fixed.
Examination and implication of these background fluxes
have been explored in previous work [Gurney et al., 2003,
2005]. The 264 region/month fluxes estimated by the
inversion are deviations from these global background
fluxes for each month in each year and are given prior flux
uncertainties of a much larger magnitude than the back-
ground fluxes, allowing for significant adjustment given the
dictates of the CO2 observations. The background fossil fuel
emission fluxes were prescribed without seasonality. The
neutral terrestrial fluxes were purely seasonal (i.e., they
integrate to zero across the full year), and the background
ocean fluxes were prescribed with both seasonal variations
and annual mean uptake.
[16] The same seasonally-varying prior fluxes used in the

cyclostationary inversion study [Gurney et al., 2004] were
used here. The prior flux uncertainty is important for
keeping the estimated fluxes within biogeochemically real-
istic bounds, though the inclusion of prior fluxes can
strongly influence the estimated flux where observations
are limited. The extent of this influence depends on the prior
flux uncertainty, which has been explored in previous
TransCom work. The prior flux uncertainties used in the
main diagonal of the prior flux covariance matrix are
identical to those used in the cyclostationary control inver-
sion [Gurney et al., 2004] for land, while the regional ocean
prior flux uncertainties for each month are a constant value
defined as

C Socnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:50GtC=yrð Þ2þ C SL1; ocn
# $( )2

q

ð2Þ

where C(SL1,ocn) are the annual mean prior flux uncertain-
ties used in the annual mean control inversion [Gurney et
al., 2002].
[17] The CO2 observational data were derived from the

GLOBALVIEW-2006 data set [GLOBALVIEW-CO2, 2006].
GLOBALVIEW is a data product that interpolates flask and
continuous CO2 measurements to give 48 synchronous
values per year. Gaps in the data are filled by extrapolation
from marine boundary layer measurements. Because many
of the stations within the observational data set have been
initiated/retired at various times over the last quarter century
and significant gaps exist, a number of different station
networks were constructed in this experiment and used to
create independent interannual flux estimates. Including or
retiring observing sites in a continuous fashion with one
network construction can introduce false variability at the
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Table 1. Site Number, Time Period, Station Count, and Individual Station Code Namesa for the Eight Networks Considered in This
Studyb

Site #

80-05 80-97 80-90 90-05 90-99 93-05 95-05 95-01

24 27 30 57 75 89 95 102

1 alt_06D0 alt_06D0 alt_06D0 alt_01D0 aia005_02D2 alt_01D0 alt_01D0 alt_01D0
2 ams_11C0 ams_11C0 ams_01D0 alt_02D0 aia015_02D2 alt_02D0 alt_02D0 alt_02D0
3 asc_01D0 asc_01D0 ams_11C0 alt_06C0 aia025_02D2 alt_06C0 alt_06C0 alt_04D0
4 azr_01D0 azr_01D0 asc_01D0 alt_06D0 aia045_02D2 alt_06D0 alt_06D0 alt_06C0
5 brw_01C0 bhd_15C0 avi_01D0 ams_11C0 alt_01D0 ams_11C0 ams_11C0 alt_06D0
6 brw_01D0 brw_01C0 azr_01D0 asc_01D0 alt_02D0 asc_01D0 asc_01D0 ams_11C0
7 cba_01D0 brw_01D0 bhd_15C0 bme_01D0 alt_04D0 azr_01D0 ask_01D0 asc_01D0
8 cmn_17C0 cba_01D0 brw_01C0 bmw_01D0 alt_06C0 bal_01D1 azr_01D0 ask_01D0
9 gmi_01D0 cmn_17C0 brw_01D0 brw_01C0 alt_06D0 bme_01D0 bal_01D1 azr_01D0
10 key_01D0 cmo_01D0 cba_01D0 brw_01D0 ams_11C0 bmw_01D0 bme_01D0 bal_01D1
11 kum_01D0 gmi_01D0 cmn_17C0 cfa_02D0 asc_01D0 brw_01C0 bmw_01D0 bhd_15C0
12 mlo_01C0 key_01D0 cmo_01D0 cgo_01D0 bhd_15C0 brw_01D0 brw_01C0 bme_01D0
13 mlo_01D0 kum_01D0 gmi_01D0 cgo_02D0 bme_01D0 bsc_01D0 brw_01D0 bmw_01D0
14 nwr_01D0 mbc_01D0 key_01D0 cmn_17C0 bmw_01D0 car030_01D2 bsc_01D0 brw_01C0
15 psa_01D0 mlo_01C0 kum_01D0 crz_01D0 brw_01C0 car040_01D2 car030_01D2 brw_01D0
16 sch_23C0 mlo_01D0 mbc_01D0 esp_06D0 brw_01D0 car050_01D2 car040_01D2 bsc_01D0
17 sey_01D0 nwr_01D0 mlo_01C0 frd040_06C3 cba_01D0 car060_01D2 car050_01D2 car030_01D2
18 smo_01C0 psa_01D0 mlo_01D0 gmi_01D0 cfa_02D0 cfa_02D0 car060_01D2 car040_01D2
19 smo_01D0 sch_23C0 nwr_01D0 gsn_24D0 cgo_01D0 cgo_01D0 cfa_02D0 car050_01D2
20 spo_01C0 sey_01D0 psa_01D0 hba_01D0 cgo_02D0 cgo_02D0 cgo_01D0 car060_01D2
21 spo_01D0 smo_01C0 sbl_06D0 izo_01D0 cgo_04D0 cmn_17C0 cgo_02D0 cba_04D0
22 stm_01D0 smo_01D0 sch_23C0 key_01D0 cmn_17C0 cpt_36C0 cmn_17C0 cfa_02D0
23 stmebc_01D0 spo_01C0 sey_01D0 kum_01D0 crz_01D0 crz_01D0 coi_20C0 cgo_01D0
24 wes_23C0 spo_01D0 smo_01C0 maa_02D0 frd040_06C3 eic_01D0 cpt_36C0 cgo_02D0
25 stm_01D0 smo_01D0 mhd_01D0 gmi_01D0 esp_06D0 crz_01D0 cgo_04D0
26 stmebc_01D0 spo_01C0 mid_01D0 gsn_24D0 frd040_06C3 eic_01D0 cmn_17C0
27 wes_23C0 spo_01D0 mlo_01C0 hba_01D0 gmi_01D0 esp_06D0 coi_20C0
28 stm_01D0 mlo_01D0 itn051_01C3 gsn_24D0 frd040_06C3 cpt_36C0
29 stmebc_01D0 mlo_02D0 itn496_01C3 hat_20C0 gmi_01D0 cri_02D0
30 wes_23C0 mqa_02D0 izo_01D0 hba_01D0 gsn_24D0 crz_01D0
31 nwr_01D0 izo_27C0 hun_01D0 hat_20C0 eic_01D0
32 poc000_01D1 key_01D0 hun082_35C3 hba_01D0 esp_02D0
33 pocn05_01D1 kum_01D0 hun115_35C3 hun_01D0 esp_06D0
34 pocn15_01D1 ljo_04D0 ice_01D0 hun082_35C3 gmi_01D0
35 pocn20_01D1 maa_02D0 izo_01D0 hun115_35C3 hat_20C0
36 pocn30_01D1 mhd_01D0 jbn_29C0 ice_01D0 hba_01D0
37 pocs05_01D1 mid_01D0 key_01D0 izo_01D0 hun_01D0
38 pocs10_01D1 mlo_01C0 kum_01D0 jbn_29C0 hun115_35C3
39 pocs15_01D1 mlo_01D0 lef_01D0 key_01D0 ice_01D0
40 psa_01D0 mlo_02D0 maa_02D0 kum_01D0 izo_01D0
41 rpb_01D0 mlo_04D0 mhd_01D0 lef_01D0 izo_27C0
42 ryo_19C0 mqa_02D0 mhdcbc_11C0 lmp_28D0 jbn_29C0
43 sch_23C0 nwr_01D0 mhdrbc_11C0 maa_02D0 key_01D0
44 sey_01D0 poc000_01D1 mid_01D0 mhd_01D0 kum_01D0
45 shm_01D0 pocn05_01D1 mlo_01C0 mhdcbc_11C0 kum_04D0
46 smo_01C0 pocn10_01D1 mlo_01D0 mhdrbc_11C0 lef011_01C3
47 smo_01D0 pocn15_01D1 mlo_02D0 mid_01D0 lef_01D0
48 spo_01C0 pocn20_01D1 mnm_19C0 mlo_01C0 lef030_01C3
49 spo_01D0 pocn25_01D1 mqa_02D0 mlo_01D0 lef076_01C3
50 spo_02D0 pocn30_01D1 nwr_01D0 mlo_02D0 lef244_01C3
51 stm_01D0 pocs05_01D1 poc000_01D1 mnm_19C0 lef396_01C3
52 stmebc_01D0 pocs10_01D1 pocn15_01D1 mqa_02D0 ljo_04D0
53 syo_01D0 pocs15_01D1 pocn20_01D1 nwr_01D0 lmp_28D0
54 syo_09C0 pocs25_01D1 pocs05_01D1 poc000_01D1 maa_02D0
55 tap_01D0 pocs30_01D1 pocs15_01D1 pocn05_01D1 mhd_01D0
56 uum_01D0 pocs35_01D1 prs_21C0 pocn15_01D1 mhdcbc_11C0
57 wlg_01D0 prs_21D0 psa_01D0 pocn20_01D1 mhdrbc_11C0
58 psa_01D0 rpb_01D0 pocs05_01D1 mid_01D0
59 rpb_01D0 ryo_19C0 pocs15_01D1 mlo_01C0
60 ryo_19C0 sch_23C0 prs_21C0 mlo_01D0
61 sch_23C0 sey_01D0 psa_01D0 mlo_02D0
62 sey_01D0 shm_01D0 rpb_01D0 mlo_04D0
63 shm_01D0 sis_02D0 ryo_19C0 mnm_19C0
64 smo_01C0 smo_01C0 sch_23C0 mqa_02D0
65 smo_01D0 smo_01D0 sey_01D0 nwr_01D0
66 spo_01C0 spo_01C0 shm_01D0 prs_21C0
67 spo_01D0 spo_01D0 sis_02D0 psa_01D0
68 spo_02D0 spo_02D0 smo_01C0 rpb_01D0
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time of station introduction, a phenomenon avoided with the
batch inversion method employed in this study.
[18] Three criteria were employed to arrive at the observ-

ing network makeup. First, in order to be included in a
network, a station could not have more than a certain
number of contiguous years in which the proportion of real
to total data falls below 50%. For networks spanning more
than 15 years, a station could not have more than 3
contiguous years under this criteria. For networks spanning
lengths of 10 to 15 years, this number falls to no more than
two. For networks spanning less than 10 years, this falls to
no more than one. Second, the multi-year mean percentage
of non-missing data in the years that qualified under the first
criteria had to exceed 67%. Finally, no networks were begun
after 1995 because of the limitation that would place on the
length of available CO2 observations and because a network
starting at a later date posed few differences from those
begun in 1995.
[19] The combination of these three criteria naturally led

to the networks represented in Table 1. The smallest
network spanning the beginning of 1979 to the end of
2005 time period contained 24 stations while the largest,

spanning the beginning of 1995 to the end of 2001 time
period, contained 102. The 24 station and 102 station
networks are shown in Figure 1.
[20] The construction of the prior observational data

covariance matrix, C(D), for the eight observational net-
works and its scaling to account for model-data mismatch
errors followed the methodology outlined in Baker et al.
[2006] except that, in the current study, measurements
considered coincident in space and time were retained and
their uncertainty was increased by the square root of the
number of coincident measurements. Observing locations
were considered coincident provided their latitude and
longitude were within 4! of each other and they were within
900 meters in the vertical.
[21] Because of the extended time period examined,

updated fossil fuel emissions were used in this study and
are derived from the work of Andres et al. [1996], Brenkert
[1998] and Marland et al. [2006]. The global fossil fuel
CO2 emissions for 2004 and 2005 were estimated using
linear extrapolation of the 1998 to 2003 time period. This
approach was chosen because these years exhibited consis-
tent growth at a rate greater than previous years which,

Table 1. (continued)

Site #

80-05 80-97 80-90 90-05 90-99 93-05 95-05 95-01

24 27 30 57 75 89 95 102

69 stm_01D0 stm_01D0 smo_01D0 ryo_19C0
70 stmebc_01D0 stmebc_01D0 spo_01C0 sch_23C0
71 syo_01D0 syo_01D0 spo_01D0 sey_01D0
72 syo_09C0 syo_09C0 spo_02D0 shm_01D0
73 tap_01D0 tap_01D0 stm_01D0 smo_01C0
74 uum_01D0 uta_01D0 stmebc_01D0 smo_01D0
75 wlg_01D0 uum_01D0 syo_01D0 smo_04D0
76 wlg_01D0 syo_09C0 spo_01C0
77 wlg_33C0 tap_01D0 spo_01D0
78 wpo000_10D2 uta_01D0 spo_02D0
79 wpon05_10D2 uum_01D0 spo_04D0
80 wpon10_10D2 wis_01D0 stm_01D0
81 wpon15_10D2 wlg_01D0 stmebc_01D0
82 wpon20_10D2 wlg_33C0 syo_01D0
83 wpon25_10D2 wpo000_10D2 syo_09C0
84 wpon30_10D2 wpon05_10D2 tap_01D0
85 wpos05_10D2 wpon10_10D2 tdf_01D0
86 wpos10_10D2 wpon15_10D2 uta_01D0
87 wpos15_10D2 wpon20_10D2 uum_01D0
88 wpos20_10D2 wpon25_10D2 wes_23C0
89 zep_01D0 wpon30_10D2 wis_01D0
90 wpos05_10D2 wpo000_10D2
91 wpos10_10D2 wpon05_10D2
92 wpos15_10D2 wpon10_10D2
93 wpos20_10D2 wpon15_10D2
94 yon_19C0 wpon20_10D2
95 zep_01D0 wpon25_10D2
96 wpon30_10D2
97 wpos05_10D2
98 wpos10_10D2
99 wpos15_10D2
100 wpos20_10D2
101 wpos25_10D2
102 zep_01D0

See GlobalView [2006] for a complete description of the individual station codes.
aThe site names contain the following elements: [3 character site name] [data grouping]_[lab #] [sampling strategy] [sampling platform] where the ‘‘data

grouping’’ provides a height or lat/lon; the ‘‘lab #’’ refers to the specific measurement laboratory; the ‘‘sampling strategy’’ refers to discrete (D),
continuous/quasi-continuous (C), or integrated sampling (I); the ‘‘sampling platform’’ refers to fixed (0), ship (1), aircraft (2), tower (3), kite (4), balloon
(5), or Firn/ice core (6).

bCO2 observations at Darwin, Australia were excluded from consideration. See Gurney et al. [2004] and Law et al. [2003] for a discussion.
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Figure 1. (a) Deseasonalized monthly net carbon exchange estimates Dr(t) (GtC/year) for the Europe
land region for all of the 13 participating TransCom 3 Level 2 models; (b) as in (a) but with each
individual model’s long-term mean (1980–2005) mean subtracted off; (c) the 13-model mean of the
monthly flux estimates from (b), bounded by the 1s within uncertainty (outer interval) and the adjusted
model spread (inner hatched interval).
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combined with the continued recent global economic ex-
pansion, were considered a better representation of emis-
sions in the 2004/2005 timeframe.

2.2. Reduction of Inversion Results

[22] In order to analyze the interannual variability from
the TransCom 3 inversion results, the neutral biosphere and
background ocean fluxes were added back into the 11 land
and 11 ocean residual fluxes returned by the inversion. This
total flux represents all surface exchange other than the
background fossil fuel CO2 emissions. The individual
model monthly flux estimates are then deseasonalized using
a compact 13 month trapezoidal running mean as follows:

Dr tð Þ ¼ 0:5

12
Sr t " 6ð Þ þ 1

12

X

tþ5

t"5

Sr tið Þ þ 0:5

12
Sr t þ 6ð Þ ð3Þ

where Dr(t) is the deseasonalized flux for a particular
region, r, for a particular month, t, and Fr(t) is the original
flux. Though the interannual variability exhibits some
model-to-model variation, the dominant difference is due
to a long-term mean offset. This was shown in Figure 2 of
Baker et al. [2006]. These offsets can be removed by
computing the individual model long-term mean and
removing this from every monthly flux for that model.
Finally, the model mean flux estimate can be calculated in
an effort to quantify the mean flux for a given month and
flux region across all transport realizations in the TransCom
3 experiment.
[23] Uncertainty associated with the model mean month

flux estimate is represented by the ‘‘within’’ uncertainty and
‘‘model spread’’ described in equations 1 and 2 of Gurney et
al. [2004]. In order to compute the deseasonalized within
model uncertainty, the posterior covariance matrix must be
operated on by a deseasonalization operator. This is done as
follows:

Q ¼ OPOT ð4Þ

where Q represents the deseasonalized posterior covariance
matrix for an individual region and model, O represents the
matrix form of the 13 month trapezoidal running mean, and
P is the posterior covariance matrix for an individual region
and model. An RMS operator is then applied to the diagonal
of Q so that the within uncertainty can now be written as,

C S
!! "

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Nmodels

n¼1

Diag Qnð Þ,

Nmodels

v

u

u

u

u

t ð5Þ

[24] The model spread of the deseasonalized fluxes is
computed as in Gurney et al. [2004] except the flux, in the
current case, is the deseasonalized rather than the fully
seasonal flux. This can be expressed as,

s S
!! "

¼
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As was shown in Baker et al. [2006], much of the spread
across the models is due to long-term mean offsets and
hence a model spread that includes a correction for the long-
term mean offsets has been employed here. This was
performed by computing an individual long-term mean
estimated flux (spanning entire network time period) for
each model/network relative to the ensemble model-mean
estimate flux for that network and subtracting that offset
from each monthly estimated flux for the particular model/
network. This expression of model spread focuses on
differences in variability rather than long-term means and,
as such, is often a more appropriate measure of model-to-
model variations. It is referred to throughout this study as
the ‘‘adjusted model spread’’. An example of this is shown
in Figure 1 for the Europe land region.

3. Results

[25] Figure 2 reveals how sparse the CO2 observations
can be, particularly across the tropical latitudes and in some
of the TransCom land regions, such as Africa and South
America. Though the networks that span the later time
periods have greater station density over land, large gaps
remain. This forms the core motivation for adding the prior
constraint (S0 in equation (1)) in the inversion [Enting,
2002]. Aggregating the regional fluxes in space and time,
post-inversion, is one way to lower the uncertainty due to
the limited observational constraint [Kaminski et al., 2001;
Engelen et al., 2002]. Figure 3 shows the result of aggre-
gating the basis function regions for total land, ocean and
latitudinal totals.

3.1. Aggregated Results

[26] Figure 3a shows the model mean Total Land, Total
Ocean and Global Total fluxes for the longest of the
observational networks constructed in this study (1980 to
2005—24 stations). Both the within uncertainty and adjusted
model spread are included. Also included in the figure is
the Multivariate ENSO Index (MEI) [Wolter and Timlin,
1993, 1998]. The MEI is based on the six main observed
variables over the Tropical Pacific and includes sea-level
pressure, zonal and meridional surface winds, sea surface
temperature, surface air temperature, and total cloudiness
fraction. Positive values reflect the warm phase (El Niño)
and are associated with warm surface water and air
temperatures in the Eastern Tropical Pacific [Trenberth
and Tepaniak, 2001].
[27] The Global Total carbon exchange variability is

driven primarily by terrestrial exchange and shows a
strong correlation to the ENSO timing, as has been noted
by other investigators [Bacastow, 1976; Keeling et al., 1995;
Bousquet et al., 2000;Rayner et al., 1999b;Feely et al., 1999;
Rödenbeck et al., 2003b; Peylin et al., 2005 among others].
The Total Land carbon exchange tends to lag somewhat
behind the peak of the MEI index and responds by turning
from sink to source or a lessened sink. Furthermore, the
influence of the June 1991 Pinatubo eruptions can be seen as
a gradual strengthening of the global sink in the early 1990s,
confounding the ENSO events of the early 1990s [Bousquet
et al., 2000].
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[28] As found in Baker et al. [2006], the relative magni-
tude of the Total Land and Total Ocean interannual vari-
ability is partly due to the tighter prior flux uncertainty of
the oceans compared to the land. However, experiments in
which the ocean prior flux uncertainty was scaled to closely
match the average level over the land regions show that the
relative amounts of interannual variability are not completely
dependent upon the prior uncertainty, but reflect con-
straints imposed by the observed CO2. The ratio of Total
Ocean to Total Land 1s variability in the 1980–2005
observational network with commensurate prior flux uncer-
tainties was 0.8 (compared to 0.31 for the ‘‘non-loosened’’
prior uncertainties) while the same ratio, when the inversion
is performed with the 1995 to 2001 observational network, is
0.68 (compared to 0.40 in the ‘‘non-loosened’’ case). The
tighter ocean prior flux uncertainties have an influence on the
relative land/ocean variability, but that influence lessens as
more observing stations are included in the inverse setup.
[29] Figures 3b and 3c show the ocean and land regions

divided into north, tropical and southern domains. On land,
the Southern Land and Tropical Land aggregated regions

exhibit slightly more interannual variability than the North-
ern Land region. In this study, the Southern Land includes
the Southern Africa region and this accounts for much of the
variability in the Southern Land region. In the ocean, the
Tropical Ocean aggregate region exhibits the greatest var-
iability. In both the land and ocean aggregated regions, the
within uncertainty in the tropics is larger than the adjusted
model spread. This, in turn, is driven by the limited number
of observations in the tropical regions, particularly over
land, and the fact that rapid vertical mixing limits the
constraint imposed by surface observations [Baker et al.,
2006]. As will be shown later, this is improved somewhat
by networks that include observing stations added in the
1990s and the first part of the 21st century.
[30] The adjusted model spread in the flux estimation

across the models is much smaller than the within uncer-
tainty in all of the aggregated regions—this is primarily due
to the fact that the spread has been constructed by removing
the individual model long-term mean offsets. The domi-
nance of the within error is a persistent theme throughout
the analysis and suggests that the models agree on the

Figure 2. The locations of the observing stations for the largest (102 stations spanning 1995 to
2001—open square) and the smallest (24 stations spanning 1980 to 2005—closed circle) networks
considered in this study. The 11 land and 11 ocean regions of the TransCom 3 experiment are also
shown.

Figure 3. TransCom 3 Level 2 model mean deseasonalized net carbon exchange estimated using the 24-station 1980 to
2005 observational network. (a) Total Land (thick red line), Total Ocean (thick blue line) and Global Total (thick black line)
fluxes. (b) Northern Land (solid black line; sum of Boreal N America, Temperate N America, Boreal Asia, Temperate Asia,
Europe), Tropical Land (solid red line; sum of Tropical America, Northern Africa, Tropical Asia), and Southern Land (solid
blue line; sum of South America, Southern Africa, Australasia) fluxes. (c) Northern Oceans (solid black line; sum of
Northern Pacific, Northern Ocean, North Atlantic), Tropical Oceans (solid red line; sum of East Pacific, West Pacific,
Tropical Atlantic, Tropical Indian), and Southern Oceans (solid blue line; sum of South Pacific, Southern Ocean, South
Atlantic, South Indian) fluxes. Within uncertainty interval (1s) is shown by thin solid lines and the adjusted model spread
by the hatched interval. Note the two y-axes in each plot and the shifted scales for each. Also shown in (a) (thick green line)
is the Multivariate El Niño/Southern Oscillation (ENSO) Index (MEI) [Wolter and Timlin, 1993, 1998], as well as the
timing of the Mt. Pinatubo eruption.
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Figure 3
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Figure 4. TransCom 3 Level 2 model mean deseasonalized net carbon exchange estimated for
latitudinal aggregates (as defined in caption to Figure 3) using all eight observational networks (see Table 1):
1980–2005; 24 stations (black solid), 1980–1997; 27 stations (red solid), 1980–1990; 30 stations (blue
solid), 1990–2005; 57 stations (green solid), 1990–1999; 75 stations (gold solid), 1993–2005; 89 stations
(black dashed), 1995–2001; 102 stations (green with diamond symbol), 1995–2005; 95 stations (lavender
with square symbol). (a) Total Land; (b) Total Ocean; (c) Northern Land; (d) Northern Oceans; (e) Tropical
Land; (f) Tropical Oceans; (g) Southern Land; (h) Southern Oceans.
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Figure 5
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interannual variations to a much greater extent than found
with the estimation of long-term means. Other studies have
arrived at similar conclusions, whether considering a trans-
port model suite as in Baker et al. [2006] or a range of
inversion parameters [Bousquet et al., 2000; Peylin et al.,
2005].

3.2. Observing Network Influence

[31] The influence of using different observing networks
can be seen in Figure 4, which presents the global total and
latitudinal aggregates for the entire time period and with all
observing networks. For the Total Land and Total Ocean,
both the long-term means and the interannual variations
show considerable agreement. As noted before, the larger
(and hence shorter timespan) networks differ in size (num-
ber of stations) from one another to a greater degree than the
smaller networks. Furthermore, these stations contain a
higher proportion of continental versus ocean sites and
hence pose greater challenges to model transport [Patra et
al., 2006]. Not surprisingly, inter-network differences are
much greater in the 1990s and the early years of the 21st
century.
[32] The agreement between the observing networks in

the latitudinal aggregates is much less but is primarily
composed of constant long-term offsets and amplitude
differences. Much of the phasing of the variability remains
coherent across the networks. Exceptions to this are the
1990 to 1995 period in the Tropical Land region where the
networks that begin in 1990 (57 and 75 stations) show
features nearly opposite in sign to those in the longer
networks (24 and 27). The Northern Ocean shows a similar
feature in the 2000 to 2002 time period. Other notable phase
mismatches occur in the Northern Land and the Southern
Ocean, 1997 to 1999.
[33] Figure 5 presents the model mean, deseasonalized

carbon exchange for all of the individual land and ocean
regions and for all observing networks. The within uncer-
tainty and the adjusted model spread associated with the
longest-running observing network (1980 to 2005) are
included in the figure. It is worth noting that the adjusted
model spread in the longest-running observing network
reflects the model-to-model differences with long-term
means removed but the model mean flux for the remaining
networks contain long-term mean offsets.
[34] Many regions show significant differences in both

the long-term mean flux and flux variations across the
different station networks. Long-term mean flux offsets
are notable in Tropical America and Northern Africa, with
the smaller networks showing net emission of over 1.0 GtC/
year versus the larger networks which show a near-neutral
net exchange. Similarly, the shorter networks show net

uptake in Temperate Asia across the decades of the 1990s
and 2000s whereas the longer networks show near neutral
exchange. The smaller networks show a somewhat weaker
uptake over the 1990s and 2000s in Europe relative to the
longer observing networks, which estimate uptake of
roughly 1.5 GtC/year. In the ocean regions, the South Pacific
ocean shows large long-term mean flux discrepancies
(>1 GtC/year) from one network to the other in the 1990s and
2000s. The South Atlantic ocean and Southern Ocean show
discrepancies in the mid- to late-1990s while the North
Atlantic ocean shows some discrepancies in the 1980s.
[35] Though network dependence does occur, the phasing

of the flux variability is often consistent across station
networks even when the amplitude is not. Examples of this
include Temperate North America, Southern Africa,
Europe, the Pacific and Indian oceans.
[36] On land, the interannual variability is consistently

greatest in the Temperate North America and Tropical
America land regions. In the oceans, the South Pacific
ocean and Tropical Indian ocean tend to dominate the
interannual variability. The Tropical America land region
exhibits shifts of almost 2 GtC/year over the course of 2 to
3 years, while the Tropical Indian ocean region exhibits
variations as large as 1 GtC/year over a 2-year timespan.
[37] The two uncertainties vary in a relative sense from

region to region. Overall, the 1s within uncertainties are
larger than the 1s model spread (true for both original and
adjusted form). Exceptions to this occur in Europe and
particular time periods in Temperate North America and the
Northern Ocean regions. In these few cases, flux differences
among the individual models are as large as the average of
individual model error. Furthermore, the magnitude of the
model spread often varies over time, suggesting that dis-
agreement between model estimated fluxes is more pro-
nounced at times.
[38] Another way of examining the dependence of the

uncertainty estimates on the network size is presented in
Figure 6. For each of the eight networks, the within
uncertainty and model spread were computed based on
the first 5 years of error covariances and fluxes. As the
station network increases in size, the overall observational
constraint increases, causing the within uncertainty to de-
cline. However, the increase in network size has the
opposing influence on the model spread, causing it to
increase. The decline in the within uncertainty reflects the
increasing observational constraint placed on the flux esti-
mates. The rise in the model spread, however, reflects the
fact that as stations are added to the observing network, the
differences between the models are systematically exposed
to a greater degree. The model spread is also consistently
larger over the land regions than over the ocean. This is due

Figure 5. TransCom 3 Level 2 net carbon exchange estimated for individual regions using all eight observational
networks (as defined in caption to Figure 4). (a) Boreal N America. (b) Temperate N America. (c) Tropical America. (d) South
America. (e) Northern Africa. (f) Southern Africa. (g) Boreal Asia. (h) Temperate Asia. i) Tropical Asia. (j) Australasia.
(k) Europe. (l) North Pacific. (m) West Pacific. (n) East Pacific. (o) South Pacific. (p) Northern Ocean. (q) North
Atlantic. (r) Tropical Atlantic. (s) South Atlantic. (t) Southern Ocean. (u) Tropical Indian. (v) South Indian. Within
uncertainty interval (1s) is shown by thin black solid lines and the adjusted model spread by the hatched interval for the
longest observational network only (1980–2005; 24 stations). Note that the vertical scale is different for the land versus
ocean regions.
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Figure 5. (continued)
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to the limited number of observing sites in tropical land
regions and the fact that CO2 gradients over land are larger
and more dependent upon differences in transport out of the
planetary boundary layer [Gurney et al., 2003].

4. Discussion

[39] As expected, the interannual variations in the net
terrestrial carbon exchange at the global scale are consistent
with a number of other inverse studies that quantified
interannual variations [Bousquet et al., 2000; Rödenbeck

et al., 2003b; Patra et al., 2005; Rayner et al., 2005; Peylin
et al., 2005; Baker et al., 2006]. All show correspondence
between land fluxes and the El Niño/Southern Oscillation.
In addition, all these studies show a reduction in the ENSO-
flux correlation for the period following the Mt. Pinatubo
eruption in the Philippines, in which large amounts of
aerosol were emitted into the stratosphere and subsequently
transported around the planet. Beyond cancellation of the
positive carbon flux anomaly associated with the ENSO
timing, the period following the Pinatubo eruption is
marked by a gradual increase in uptake on land. This
negative flux anomaly is most readily seen in the Boreal
Asia, Temperate North America, Tropical Asia, and Europe
regions (see Figure 5). Negative anomalies are also evident
in the Tropical America and Temperate Asia regions for the
shorter networks suggesting that the post-Pinatubo impact
was felt widely across both the tropical and northern
extratropical land regions. This has been hypothesized as
NPP stimulation from the increase in diffuse to direct
radiation resulting from the aerosol loading in the atmo-
sphere [Gu et al., 2003; Farquhar and Roderick, 2003].
Recent modeling research suggests that, rather than an NPP
stimulation, the decline in the CO2 atmospheric growth rate
results from a combination of greater ocean uptake, reduced
heterotrophic respiration, and reduced biomass burning
[Angert et al., 2004].
[40] Results from Peylin et al. [2005] show the inverse

result placing most of the negative anomaly in North
America but the biogeochemical model simulations also
performed in that study show a somewhat broader anomaly
across the northern hemisphere. Rödenbeck et al. [2003b]
place the negative anomaly in Tropical America and the
eastern portion of Temperate North America.

Figure 7. TransCom 3 Level 2 model mean Tropical Land net carbon exchange anomalies for all eight
observational networks (as defined in caption to Figure 4). Fluxes have been deseasonalized, detrended
(monthly fluxes adjusted by the long-term mean slope to achieve a long-term mean slope of zero),
standardized (anomalies are in units of standard deviation), and long-term means are centered on zero flux.

Figure 6. Network within uncertainty and model spread
for the aggregate Tropical Land region (sum of Tropical
America, Northern Africa, Tropical Asia) based on the first
5 years of net carbon exchange covariances (within
uncertainty) and fluxes (model spread) for each of the eight
observing networks (as defined in caption to Figure 4). The
within uncertainty calculation was computed from the full
posterior covariance matrices according to equation (5).
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[41] The most obvious example of the relationship be-
tween ENSO and net carbon exchange can be seen for the
very strong ENSO event of 1997/1998. Large biomass fires
in Tropical Asia were related to this ENSO event; one study
estimated the carbon loss during this period to range from
0.8 to 2.6 GtC/year, while another had a larger upper bound
estimating losses at 0.8 to 3.7 GtC/year [Page et al., 2002;
Langenfelds et al., 2002; van der Werf et al., 2006]. All are
consistent with the TransCom results, which show a positive
flux anomaly during this period [Schimel and Baker, 2002;
Baker et al., 2006].
[42] The magnitude of this global land flux anomaly

evident in Figure 3 is roughly 4.0 GtC/year. This anomaly
is seen in the aggregated Tropical Land region estimate,
totaling roughly 2 to 2.5 GtC/year, and in the Southern Land
region total at approximately 1.0 to 1.5 GtC/year. Though
the eight networks show mean offsets, the anomalous flux is
consistent in terms of phasing and magnitude, as shown by
the normalization of the Tropical Land flux anomalies in
Figure 7.
[43] Recent work by van der Werf et al. [2006] on fire

events shows significant consistency with some of the larger
flux anomalies in the Tropical Land and Southern Land
regions. Roughly two thirds of the 1997 global carbon
emissions due to fire were attributed in that study to a
region similar to the Tropical Asia region in this study
(Figure 5i). The remainder of fire-derived carbon emissions
in 1997 were attributed to regions closely aligned with the
Southern Africa and South America regions denoted here
(Figures 5f and 5d, respectively). The 1997 ENSO anomaly
is also evident in the inverse estimated fluxes for the
Temperate Asia region, though this flux anomaly disappears
for networks composed of greater than 30 stations. These
same larger networks show a larger positive flux anomaly
for the Tropical Asia region then, raising the possibility that
the smaller networks have insufficient information to sep-
arate the fluxes in these two neighboring flux regions. No
significant fire emissions are evident in van der Werf et al.
[2006] for the Temperate Asia region.
[44] The station networks that extend back to 1980 allow

for an analysis of previous ENSO events. The Southern
Land aggregate region shows positive flux anomalies in
both the 1982/1983 and 1987 ENSO events, while the
Tropical Land shows a response for the 1987 ENSO only,
driven solely by Tropical America (though somewhat
lagged). Unlike the strong 1997/1998 ENSO event, the
Tropical Asia region shows little response to the earlier
ENSO events. South America and Southern Africa exhibit
positive flux anomalies coincident with all three large
ENSO events among the southern land regions. Temperate
Asia also shows a positive anomaly during these earlier
ENSO events though the fact that the larger networks
eliminated the response in 97/98 raises questions about
how well the sparser networks are able to separately
estimate fluxes at the continental scale. Rödenbeck et al.
[2003b] also found little response in Tropical Asia to the
ENSO events of the 1980s, while showing a large positive
flux response to the 1997/1998 event.
[45] The strong ENSO event of 1997/1998 was also

observed to cause lessened outgassing of CO2 from the

Eastern Tropical Pacific and has been estimated in some of
the inverse studies [Feely et al., 2002; Patra et al., 2005;
Peylin et al., 2005]. Like the study of Baker et al. [2006],
this study finds an anomalous uptake in the Eastern Tropical
Pacific (&0.2 GtC/year) and a larger anomalous uptake in
the South Pacific region (&0.6 GtC/year).
[46] Consistent among most of the interannual inverse

studies is the conclusion that the interannual variability in
the global exchange is dominated by the land versus the
ocean [Bousquet et al., 2000; Rödenbeck et al., 2003b;
Patra et al., 2005; Baker et al., 2006]; Peylin et al., 2005].
Furthermore, the oceanic interannual variability is greatest
in the tropics, though large variability can be found in the
Southern Ocean and South Pacific. Tropical ocean variabil-
ity is dominated by the Tropical Indian ocean. As men-
tioned previously, the lesser ocean versus land interannual
variability can partly be explained by the tighter ocean prior
flux uncertainty, though as the observational constraint
increases with increasing observing network size, the lesser
ocean variability appears to be a reflection of the observa-
tional data constraint.

5. Conclusions

[47] The TransCom 3 Level 2 experiment is an atmo-
spheric CO2 inversion in which 13 participating modeling
groups submitted atmospheric CO2 concentration flux
responses to which the inverse method has been applied.
In the current study, the TransCom 3 interannual inversion has
been extended to span the 1980 to 2005 time period. In
addition to examining the estimation uncertainty and spread
of results from the participating modeling groups, this study
has also examined the sensitivity of the results to eight
different observing networks. Constructing different networks
allows us to examine earlier time periods in which fewer sites
were taking data, while avoiding potential time-dependent
biases associated with varying the sites used inside a single
inversion.
[48] The results of this research confirm that the land is

the dominant contributor to the interannual variability in the
net carbon exchange: the inversions for all the station
networks exhibit this broad feature. In both the ocean and
land, the tropics tend to account for the majority of the
interannual variability.
[49] As has been found in previous work, the total land

net carbon exchange shows considerable correlation with
the El Niño/Southern Oscillation, with positive terrestrial
carbon flux anomalies coinciding with the peak of the
ENSO warm phase. The large 1997/1998 ENSO event is
easily discerned and is seen most clearly in the carbon flux
estimates for the Tropical Asia, Temperate Asia, Northern
Africa and Southern Africa land regions. The carbon
emission during this period is consistent with the observa-
tion of large fires in Tropical Asia. Earlier ENSO events of
the 1980s are most evident in southern land positive flux
anomalies, particularly evident in South America and
Southern Africa.
[50] The slowing of the global CO2 growth rate after the

Pinatubo eruption is also evident in the Total Land net
carbon exchange and this appears to be evident at the
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regional scale over much of the tropical and northern
extratropical land regions. The within uncertainty remains
greatest in the tropics but lessens as additional observing
stations are included in the station networks. The model
spread, however, increases with increasing station density,
owing to the greater observational constraint illuminating
the model-to-model transport differences.
[51] Consideration of the interannual variability shows

that the phasing of the flux variability is relatively consis-
tent across model transport and the eight networks, partic-
ularly for the latitudinally aggregated land and ocean
regions. This consistency is somewhat less when the
22 individual basis function regions are considered. How-
ever, even at the individual basis function region, incon-
sistencies are for particular isolated timespans only.
[52] The consistency of the results among the station

networks in terms of the interannual variability suggests
that these time-dependent inversions could be used to
explore the relationships between net carbon exchange
and climate indices or climate variability itself. Such an
exploration may hold insights into biogeochemical mecha-
nisms and is an important consideration for future research.
[53] Though the participating models in the TransCom 3

experiment show considerable agreement on the interannual
variations in net carbon exchange, further exploration into
the model-to-model differences remains a top priority for
research, as transport is a significant contributor to the
uncertainty in inverse results. Furthermore, the potential
for bias in the transport algorithms of the models involved
must be examined and used to improve transport simula-
tions. This is particularly true for long-term mean flux
estimation, for which uncertainties appear much greater
than estimates of interannual variation.
[54] Other aspects of this work deserving of more atten-

tion include an exploration of individual station sensitivity.
It is likely that a small subset of stations are responsible for
most of the inconsistencies seen between the networks.
[55] Lastly, the time-dependant inversions performed here

should be updated with the newly available vertical CO2

profile measurements in order to explore how these meas-
urements might alter both the long-term mean and the
interannually-varying carbon flux estimates as has been
suggested in recent research [Stephens et al., 2007].
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Peylin, P., P. Bousquet, C. Le Quéré, S. Sitch, P. Friedlingstein, G. McKinley,
N. Gruber, P. Rayner, and P. Ciais (2005), Multiple constraints on regional
CO2 flux variations over land and oceans, Global Biogeochem. Cycles,
19, GB1011, doi:10.1029/2003GB002214.

Prentice, I. C., G. Farquhar, M. Fashm, M. Goulden, M. Heimann,
V. Jaramillo, H. Kheshgi, C. Le Quéré, and R. J. Scholes (2001), The
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