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The Macc service

Monitoring Atmospheric Composition and Climate - Interim
Implementation - is the current pre-operational Atmosphere Service of
the European Earth observation programme (coord. European Comm.).
36 main contributors, lead by ECMWF
http://www.gmes-atmosphere.eu/
MACC-II routinely provides data records on atmospheric composition
for recent years, data for monitoring present conditions and forecasts
of the distribution of key constituents for a few days ahead.
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The Macc service

o Monitoring Atmospheric Composition and Climate - Interim
Implementation - is the current pre-operational Atmosphere Service of
the European Earth observation programme (coord. European Comm.).

36 main contributors, lead by ECMWF
http://www.gmes-atmosphere.eu/

o MACC-II routinely provides data records on atmospheric composition
for recent years, data for monitoring present conditions and forecasts
of the distribution of key constituents for a few days ahead.

o High-resolution data assimilation systems with routine delivery of
observations and of assimilated products
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MACC-II hybrid approach for CO,
Inversion

o Purpose: assimilate measurements of CO, mole fraction
Non-reversible atmospheric mixing
o Need a statistical approach to revert the sign of time

o Bayesian approach chosen because it is the most generic
one
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MACC-II hybrid approach for CO,
Inversion

o Variational approach for “high”-resolution information

Weekly day/night grid point fluxes

(3.75x2.5 deg? global)
Heavily parallelized (patent submitted)

o Ensemble approach for coarse resolution information
Mean variance of the flux errors over long periods of
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o [CO,] from 136 surface stations

o NOAA, WDCGG, RAMCES,
CarboEurope databases
1.5 M obs

o 34-yr 4D inversion Annual anomalies

o 34 yrs processed in a unique
assimilation window to ensure
physical and statistical
consistency ol : VT Ry

o Variational approach to allow "= 0 T o5 s
high resolution (3.75x2.5 deg?
and weekly) - 7.5 M var

o Large parallelisation effort ]
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Evaluation of the inverted fluxes

o Inverted fluxes ~ 10> km?

o Ground truth (eddy covariance measurements) ~ 1 ha
Too different from inversion resolution

o Indirect evaluation with atmospheric measurements
Need transport model again

o Expert knowledge

We know how much carbon an ecosystem is able to lose or
gain
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MACC-II global system vs.:

- TCCON XCO, measurements
- Surface [CO,] measurements

Dependent data (assimilated)

- Aircraft [CO,] measurements

Poorbdan

from the HIPPO campaigns waccui
from the GEOMON database
from the Contrail database

FT = free troposphere
BL = boundary layer

o Skill compared to baseline

inversion (Poor Man’s inversion)
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Driven by NOAA annual global
growth rate

RMS (ppm})




MACC-II global system vs.:

- TCCON XCO, measurements
Look at seasonal cycle for year 2010 (ppm)
Smooth curve computed from both model and measurements
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Evaluating the assigned error
statistics with XCO, data

o Transport prior fluxes and air-sample inversion
o Compare with y = GOSAT/ ACOS b2.10 retrievals (not assimilated!)
in 3 latitude bands, for land and ocean
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Time series over ocean
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Time series over land
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Towards assimilating satellite data

o Uneven spatial coverage of the surface measurements
o Long delays to get most of them (flasks, ...)

o Dedicated satellite programs aiming at filling the gap
GOSAT since mid-2009
OCO-2 to be launched in summer 2014
OCO-3, TANSAT, etc.
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Assimilating column retrievals

o Testing the assimilation of simulated data

OCO (Chevallier et al. 2007a,b)

A-SCOPE (Hungershoefer et al. 2009, Houweling et al. 2010)

GOSAT (Chevallier et al. 2009, 2010)

Large potential of the satellite data

Uncertainty Reduction
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Assimilating column retrievals

o Testing the assimilation of simulated data
OCO (Chevallier et al. 2007a,b)
A-SCOPE (Hungershoefer et al. 2009, Houweling et al. 2010)
GOSAT (Chevallier et al. 2009, 2010)

Large potential of the satellite data
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Assimilating column retrievals

o Testing the assimilation of simulated data

OCO (Chevallier et al. 2007a,b)
A-SCOPE (Hungershoefer et al. 2009, Houweling et al. 2010)

GOSAT (Chevallier et al. 2009, 2010)

Large potential of the satellite data

ESA Climate Change Initiative (CCI) Page 19
User Requirements Document Version — Final
Version 1 (URDv1) 3 Feb 2011
for the Essential Climate Varable (ECV)
Greenhouse Gases (GHG)

http://www.esa-ghg-cci.org/

Requirements for regional CO, and CH, source/sink determination
using SCIAMACHY/ENVISAT and TANSO/GOSAT
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Assimilating column retrievals

o Testing the assimilation of simulated data
OCO (Chevallier et al. 2007a,b)

A-SCOPE (Hungershoefer et al. 2009, Houweling et al. 2010)
GOSAT (Chevallier et al. 2009, 2010)

Large potential of the satellite data

o Real data

TOVS (Chevallier et al. 2005a)

AIRS (Chevallier et al. 2005b, 2009)
TCCON (Chevallier et al. 2011)
SCIAMACHY, GOSAT (unpublished)

i ;Q Realistic results using TCCON

LSC



Estimating surface fluxes from
XCO, data

o Invert grid-point 8-day CO, fluxes from existing XCO, retrieval
products

GOSAT-TANSO
o University of Leicester (OCFP)
o SRON/KIT (SRFP)
SCIAMACHY (late Envisat mission)
o University of Bremen (BESD)
TCCON
o Ensemble product (EMMA, University of Bremen)

o Comparison with surface air sample inversion using two vertical
resolutions of the LMDZ model (19 layers and 39 layers)
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Many thanks to all data providers!



Inverted growth rates
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LMDZ-39. Global 12-month atmospheric growth rate from
NOAA computed month after month from the prior fluxes,
from the surface air-sample inversion and from the CRDP-
based inversions. The x axis corresponds to the month at

@ the beginning of the 12-month period.
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Inverted seasonal cycles
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LMDZ-39. Seasonal cycle of the natural CO, fluxes derived
through inversion (without fossil fuel fluxes).
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Inverted annual budgets
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> Carbon budgets
data (e.g., from the CarboEurope synthesis)

> Large sensitivity to the choice of the L2 product

» Large sensitivity to the choice of the transport model

not always consistent with independent



Conclusions

Strong constraint seen from the satellite retrievals on
atmospheric inversion.

The stringent users requirements on systematic errors for
the satellite products are not met yet despite better-than
expected precision (0.5x).

The transport model errors significantly degrade the
inversion results as well.

o Try higher resolution, new physical packages

Finally, prior error assignment seems to control the
amplitude of the inverted seasonal cycle.

o Reinforce robustness of the assigned errors
Analysis made complicated by large flux footprint of XCO,



Conclusions

o Surface inversions are considerably more realistic than
satellite ones, but not fully satisfactory

o Validation with TCCON shows seasonal biases
o Sensitive to the transport model

o 34 years of inverted weekly fluxes represent a
considerable amount of data to investigate

o This is only the beginning...
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Thank you




