

IPSL Climate Modelling Centre

Projection of future climate change at the global scale

Jean-Louis Dufresne

IPSL Climate Modeling Center Icmc.ipsl.fr

Paris, 12 November 2013

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W}.\text{m}^{-2}$

All the incoming solar radiation is absorbed : F_a = 240W.m⁻²

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W}.\text{m}^{-2}$

2/3 of incoming solar radiation is absorbed : $F_a = 240W.m^{-2}$

Global mean surface temperature is 15°C due to greenhouse effect

What radiation heat transfer theory tell us

Current greenhouse effect: $G \approx 150 \text{ W.m}^{-2}$ Contribution of atmospheric gases (clear sky)

Water vapour60% CO_2 26%Ozone O_3 8% $N_2O + CH_4$ 6%

For a doubling of CO₂ concentration, green house effect increases by ≈ 3.7 W.m⁻²

From radiative transfer computation to climate modelling

For a doubling of the CO_2 concentration:

- the green house effect increases by 3.7 W.m⁻²
- the temperature increases by ≈ 1.2 K, if nothing change except the temperature

But feedbacks exist:

- Snow and sea ice reflect solar radiation; if they decrease, more solar energy will be absorbed ⇒ positive feedback
- Water vapour is the main greenhouse gas; if it increases, the greenhouse effect will be enhanced ⇒ positive feedback
- Clouds reflect solar radiation and contribute to the greenhouse effect; if they change, the energy budget will be modified
- ⇒ positive or negative feedback

Need of 3D numerical climate models

Climate sensitivity estimates from CMIP3 GCMs (IPCC-AR4)

 λ can be diagnosed from model results with different technics

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

(Dufresne & Bony, 2008)

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

(Dufresne & Bony, 2008)

Transient temperature response to a CO₂ doubling (CO₂ increase 1%/year, 70 years)

⁽Dufresne & Bony, 2008)

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Scenario for future climate change projections

Radiative forcing of future scenarios

Contribution of individual forcings to total forcing relative to 1850

Radiative forcing of future scenarios

Contribution of individual forcings to total forcing relative to 2000

The IPSL Earth System Model

The IPSL Earth System Model

Natural and anthropogenic forcings

Solar and volcanoes

Green house gases and active gases

 CO_2 concentration

IPSL-CM5A-LR

Atmospheric composition

Radiative forcings

Climate changes

Authorized CO₂ emissions

Ozone and aerosols computations (IPSL-CM5A-LR model)

Reference for the historical period and the future RCP8.5 scenario (IPSL-CM5A-LR model)

Outlook

- I. Basic of climate change: greenhouse effect, forcing and feedbacks
- II. Scenarios and forcings for climate change projections
- III. Climate change projections at global scales

Global mean surface temperature

1850 to 2300 IPSL-CM5A-LR model

Global mean surface temperature change

RCP 2.6

RCP 8.5

Change in average surface temperature (1986–2005 to 2081–2100)

Spatial distribution of the normalized air surface temperature change $\Delta T(x,y)/\langle \Delta T \rangle$ in 2100

RCP2.6

RCP4.5

The change of the global average precipitation does not depend directly from the change of global average water vapor

Global Energy Flows W m⁻²

Adapted from [Trenberth & Fasullo, 2012]

The **change of the global average precipitation** is constrained by the **radiative cooling** of the atmosphere

Precipitation changes: Geographical distribution

Relative change in average precipitation, RCP8.5 scenario (2081-2100)

Precipitation changes: Geographical distribution

Relative change in average precipitation, RCP8.5 scenario (2081-2100)

At the global scale:

- Precipitation increases in some regions while deceasing in others
- the contrast between wet and dry regions is expected to increase
- same with the contrast between wet and dry seasons

And in a simpler world? Precipitation changes in response to a uniform increase of temperature of 4K for aqua-planets

A large fraction of the spread in precipitation changes originates from fundamental problems in water-vapor-temperature-circulation interactions

Regional precipitation changes using a scaling approach

[Frieler et al., 2012]

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Courtesy L. Bopp

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Medium scenario : to stabilize CO₂ concentration 550 ppm, emissions need to be strongly reduced. However, temperature will continue to increase

Courtesy L. Bopp

Carbone emission, CO₂ concentrations and global temperature: time constants

Higher scenario : emissions, concentration and temperatures continue to grow

Medium scenario : to stabilize CO₂ concentration 550 ppm, emissions need to be strongly reduced. However, temperature will continue to increase

Lower Scenario : to limit a 2° global warming, CO₂ concentration has to be limited to less then 450 ppm, and emissions need be to be 0 before the end of the century

Courtesy L. Bopp

Thank you for your attention