CO_2 and CH_4 over the India: A study based on surface flask measurements and an atmospheric transport zoom model

Xin Lin, P. Ciais, M. Ramonet, P. Bousquet, N. K. Indira, M. Delmotte, M. Schmidt, Y. Balkanski, A. Cozic, N. Evangeliou, R. Locatelli, N. MacBean, M. Saunois, P. S. Swathi, P. Peylin, R. Wang, T. Wang

SOFIE LSCE/PKU Workshop, October 14th 2014

Background

Sources: Emission Database for Global Atmospheric Research (EDGAR), release version 4.2

GLOBALVIEW-CO₂ in Patra et al. (2011)

Data paucity

Sites in TRANSCOM-CO₂ (Peylin et al., 2013)

Background

	Lat	Lon	Alt
HLE	32.78°N	78.96°E	4517 m
PON	12.01°N	79.86°E	20 m
PBL	11.65°N	92.76°E	20 m

Time ranges of observations

- Part I: CO₂ and CH₄ flask measurements at the three ground stations in India
- Part II: CO₂ and CH₄ forward simulation with an atmospheric transport zoom model

- Part I: CO₂ and CH₄ flask measurements at the three ground stations in India
- Part II: CO₂ and CH₄ forward simulation with an atmospheric transport zoom model

Facts about India: Geography and vegetation

- NE India (Indo-Gangetic Plain) and S India are the most populous regions
- Croplands account for 50-60% of the total land area

Land Cover (GLC2000)

Facts about India: Monsoon circulations

Influences on transport and airmass origins

- The progress/retreat of SW/NE monsoon and movement of ITCZ transport airmass of different origins to the observation sites
- Deep convection associated with SW monsoon rapidly transport surface (polluted) airmass vertically to UTLS

Facts about India: Anthropogenic emissions

Sources: EDGARv4.2

CO₂: time series

Gradients of annual mean CO₂ between ground stations

India	HLE	PON	PBL	KZM	WLG
ΔCO_2 (ppm)	0.0	1.3-3.0	-1.6	0.7	1.0

CO2 Emissions (EDGARv4.2)

CO₂: seasonal cycle

WLG

CH₄: time series

5-day backtrajectories

Gradients of annual mean CH₄ between ground stations

India	HLE	PON	PBL	KZM	WLG
ΔCH_4 (ppb)	0.0	36.9	20.8	25.9	19.6

CH₄: seasonal cycle

2010

- The cross-station gradients of annual means suggest significant emission sources of CO₂ and CH₄
- Although they have the potential to provide useful constraints on GHG fluxes over India (particularly NE and S India), a more comprehensive observation network is required.
- To quantify effects of various sources/sinks and atmospheric transport on observations at different spatio-temporal scales, we need atmospheric transport models force with meteorological data and surface GHG fluxes.

- Part I: CO₂ and CH₄ flask measurements at the three ground stations in India
- Part II: CO₂ and CH₄ forward simulation with an atmospheric transport zoom model

Setup of the model: LMDZORINCA with Asian zoom

 $\begin{array}{c} \text{CO}_2 \text{ fluxes} \\ \text{CH}_4 \text{ fluxes} \end{array} \xrightarrow{\text{LMDZORINCA_zAsia}} \begin{array}{c} \text{CO}_2 \text{ concentrations} \\ \text{CH}_4 \text{ concentrations} \end{array}$

144x142 zoom grid over India and China 0 80°N 40°N LATITUDE 0° 40°S 0 80°S 60°W 160°W 40°E 140°E LONGITUDE

LMDZORINCA is a global model that couples a general circulation model (**LMD**) to a terrestrial biosphere module (**ORCHIDEE**) and an aerosol and chemistry module (**INCA**)

- Horizontal resolution: 144×142
- Vertical resolution: 19 layers from 3.88 to 1013 hPa
- 'GES' version is used, which includes CH₄ and CO chemistry
- Setup of Asian zoom
 - 0.51° (lat.)×0.66° (lon.) for a region centered over India and China
 - $4.62^{\circ} \times 4.64^{\circ}$ for other regions

Setup of the model: Original flux maps

CO ₂	Data source	interann./clim.	time step	resolution
Anthropogenic	IER products for CARBONES; GEOCARBON products	interannual	monthly	1°
Biomass burning	GFEDv3.1	interannual	monthly	0.5°
Land flux (NEE)	ORCHIDEE outputs for CARBONES	interannual	daily	0.72°
Ocean flux	NOAA/AOML product; Park et al. (2010)	interannual	monthly	4° ×5°
CH ₄	Data source	interann./clim.	time step	resolution
CH ₄ Anthropogenic	Data source EDGARv4.2	interann./clim. interannual	time step yearly	resolution 0.1°
CH ₄ Anthropogenic Wetland	Data source EDGARv4.2 Kaplan et al. (2006)	interann./clim. interannual climatological	time step yearly monthly	resolution 0.1° 1°
CH₄ Anthropogenic Wetland Biomass burning	Data sourceEDGARv4.2Kaplan et al. (2006)GFEDv3.0	interann./clim. interannual climatological interannual	time step yearly monthly monthly	resolution 0.1° 1° 0.5°
CH₄ Anthropogenic Wetland Biomass burning Termite	Data sourceEDGARv4.2Kaplan et al. (2006)GFEDv3.0Sanderson et al. (1996)	interann./clim. interannual climatological interannual climatological	time step yearly monthly monthly	resolution 0.1° 1° 0.5° 1°
CH₄ Anthropogenic Wetland Biomass burning Termite Soil	Data sourceEDGARv4.2Kaplan et al. (2006)GFEDv3.0Sanderson et al. (1996)Ridgwell et al. (1999)	interann./clim. interannual climatological interannual climatological climatological	time step yearly monthly monthly monthly	resolution 0.1° 1° 0.5° 1° 1°

As model input, each flux map was re-gridded into 144x142 Asian zoom grid.

CH₄: Model vs. OBS at NOAA/ESRL stations

- Well capture of long-term trends and interannual variability
- Smaller N-S gradient due to faster inter-hemispheric mixing
- Well capture of seasonal cycle amplitudes
- Shifts in seasonal cycle phases

CH₄: Model vs. OBS at Indian stations

- Well capture of annual means and interannual variability
- Well capture of seasonal cycle amplitudes and phases

60° E

30°

20*

10°

70° E

80° E

90° E

100° E

WLG

CH₄: Model vs. OBS at other Asian stations

WLG Significant underestimation of annual means at KZD 0 20* Seasonal cycles are not well captured at KZD, KZM, and WLG 0 2100 1950 2000 LMDZ_zAsia modeling LMDZ zAsia modeling LMDZ_zAsia modeling Flask observation Flask observation Flask observation ^o 2000 1900 1950 CH₄(ppb) 0061 1900 1850 1850 1800 1800 WLG (36.29N,100.9E,3810m) KZM (43.25N,77.87E,2519m) 44.08N.76.87E.595m) 1800 1750 1700 2010 2004 2006 2010 2010 2004 2006 2008 2008 2004 2006 2008 Year Year Year 90 45 45 LMDZ zAsia modeling LMDZ_zAsia modeling LMDZ_zAsia modeling Flask observation Flask observation Flask observation 60 30 30 30 15 15 CH₄(ppb) 0 0 0 -30 -15 -15 -60 -30 -30 KZD (44.08N,76.87E,595m) KZM (43.25N,77.87E,2519m) WLG (36.29N,100.9E,3810m) -90 -45 45 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

60° E

70° E

80° E

90° E

100° E

Attribution of CH₄ synoptic variations

• HLE

- Nov. May: Livestock emissions, followed by waste water treatment
- Jun. Oct.: emissions from wetlands and rice paddies

• PON

- Dominated by livestock emissions and waste water treatment for most of a year
- Emissions from **rice paddies** and **wetlands** play more important roles during Oct. Dec.

o PBL

total

wtld

rice

soil

- Dominated by livestock emissions and waste water treatment for most of a year
- Emissions from **rice paddies** and **wetlands** play more important roles during Oct. Dec.

CO₂: Model vs. OBS at NOAA/ESRL stations

• Overestimation of long-term trends

• Northern Hemisphere stations

- Well capture of seasonal cycle phases
- Overestimation of seasonal cycle amplitudes

Southern Hemisphere stations

Poor ability to reproduce the small CO₂ seasonal cycle

CO₂: Model vs. OBS at Indian stations

Overestimation of long-term trends

- **HLE** advance in seasonal cycle phase, overestimation of magnitude
- **PON** advance in seasonal cycle phase, overestimation of magnitude, extremely low value in Oct.
- **PBL** advance and extension in CO₂ drawdown phase

CO₂: Model vs. OBS at other Asian stations

Overestimation of long-term trends 0

- **KZD** lag and shortening of CO₂ drawdown phase 0
- **KZM** advance in seasonal cycle phase, underestimation of 0 magnitude
- **WLG** well capture of seasonal cycle phase, overestimation 0 of magnitude

JAN FEB

Attribution of CO₂ synoptic variations

LMDZ_CO2OC — LMDZ_CO2FF LMDZ_CO2NEE — LMDZ_CO2 LMDZ_CO2BB • Flask observation

Zoom v.s. Regular: CO₂ residuals

500

2000 2500 3000 5000

LMDZ_ZASIA: 0.51° (lat) \times 0.66° (lon) over the zoom LMDZ_RGL: 1.25° (lat) \times 2.5° (lon) over the globe

- \circ CO₂ and CH₄ forward modeling with alternative prior fluxes
- Extend the modeling period to 2012

CO ₂	Data source	interann./clim.	time step	resolution
Anthropogenic	IER products for CARBONES; GEOCARBON products	interannual	monthly	1°
Anthropogenic	IER + PKU-CO ₂	interannual	daily hourly	0.1°
Biomass burning	GFEDv3.1	interannual	monthly	0.5°
Land flux (NEE)	ORCHIDEE outputs for CARBONES	interannual	daily	0.72°
Land flux (NEE)	ORCHIDEE	Interannual	hourly	0.5°
Ocean flux	NOAA/AOML product; Park et al. (2010)	interannual	monthly	4° ×5°
CH ₄	Data source	interann./clim.	time step	resolution
Anthropogenic	EDGARv4.2	interannual	yearly	0.1°
Wetland	Kaplan et al. (2006)	climatological	monthly	1 °
Biomass burning	GFEDv3.0	interannual	monthly	0.5°
Termite	Sanderson et al. (1996)	climatological	monthly	1 °
Soil	Ridgwell et al. (1999)	climatological	monthly	1 °
Ocean	Lambert & Schmidt (1993)	climatological	monthly	1 °

 Evaluation of the model against more observations within and around the zoom region, focusing on model performance on seasonal, synoptic, diurnal variations and gradients between stations.

Thank you very much for your attention!

