Response of terrestrial carbon fluxes to temperature variations (γ) in the CMIP5 Earth system models

Yongwen Liu

Directed by Shilong Piao, Philippe Ciais & Tao Wang

Definition of γ

'gamma' (γ) measures the strength of changes in carbon fluxes by land or ocean in response to changes in climate.

(IPCC AR5)

Long-term regional carbon-climate feedback (γ)

0.5

(kgC m⁻² K⁻¹)

-0.5

-1

Radiatively coupled experiment

CO₂ increases by 1% yr⁻¹, and only produces a change in temperature.

 γ : Changes in carbon storage from $1 \times CO_2$ to $4 \times CO_2$ (during 140 years), relative to global temperature change.

(IPCC AR5)

γ is NOT constant in long-term period

LETTER

doi:10.1038/nature12915

A two-fold increase of carbon cycle sensitivity to tropical temperature variations

Xuhui Wang¹, Shilong Piao^{1,2}, Philippe Ciais^{1,3}, Pierre Friedlingstein⁴, Ranga B. Myneni⁵, Peter Cox⁴, Martin Heimann⁶, John Miller^{7,8}, Shushi Peng¹, Tao Wang^{1,3}, Hui Yang¹ & Anping Chen⁹

- γ : The sensitivity of the atmospheric CO₂ growth rate to tropical temperature interannual variability
- γ has increased by a factor of 1.96 \pm 0.3 in the past five decades.

Questions:

Do CMIP5 models capture the changes in tropical γ during past 50 years?

How will γ change under future climate change scenarios?

CMIP5 Earth system models used in this analysis

17 fully coupled models $(CO_2+Climate)$ were used because a full suite simulations was available for nbp, gpp, npp, ra, rh, tas, pr and rsds variables.	Models	Historical	RCP2.6	RCP4.5	RCP6.0	RCP8.5
	BNU-ESM				×	
	CanESM2		\checkmark	\checkmark	×	\checkmark
	CCSM4		\checkmark	\checkmark	\checkmark	\checkmark
	CESM1-BGC	\checkmark	×	\checkmark	×	\checkmark
Historical: 17 models RCP2.6: 12 models RCP4.5: 16 models RCP6.0: 9 models RCP8.5: 17 models	GFDL-ESM2M		×	\checkmark		\checkmark
	GFDL-ESM2G	\checkmark		\checkmark	\checkmark	\checkmark
	HadGEM2-CC		×	\checkmark	×	\checkmark
	HadGEM2-ES	\checkmark		\checkmark	\checkmark	\checkmark
	ISPL-CM5A-LR	\checkmark		\checkmark	\checkmark	\checkmark
	ISPL-CM5B-LR	\checkmark	×	\checkmark	×	\checkmark
	MIROC-ESM	\checkmark		\checkmark	\checkmark	\checkmark
	MIROC-ESM-CHEM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	MPI-ESM-LR	\checkmark	\checkmark	\checkmark	×	\checkmark
	MPI-ESM-MR	\checkmark	\checkmark	\checkmark	×	\checkmark
	MRI-ESM1	\checkmark	×	×	×	\checkmark
	NorESM1-ME	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	NorESM1-M		\checkmark			

$$y = \gamma^{\text{int}} x_{\text{T}} + \delta^{\text{int}} x_{\text{P}} + \varepsilon^{\text{int}} x_{\text{R}} + \zeta$$

20-yr moving window

Each variable is detrended within each moving window

- y: detrended carbon fluxes (variable: nbp, gpp, ra, rh);
- $x_{\rm T}$: detrended air temperature (variable: tas);
- $x_{\rm P}$: detrended precipitation (variable: pr);
- $x_{\rm R}$: detrended surface downwelling shortwave radiation (variable: rsds).

The fitted regression coefficients γ^{int} and δ^{int} define the apparent carbon flux sensitivity to interannual variations in temperature and precipitation. (Piao et al., GCB, 2013)

Methods

- 1. 17 fully coupled models (CO_2 +Climate) are used because a full suite simulations is available for nbp, gpp, npp, ra, rh, tas, pr and rsds variables.
- 2. Scenarios include: Historical, RCP2.6, RCP4.5, RCP6.0 and RCP8.5.
- 3. Monthly datasets are download from PCMDI node 9 during August 2014.
- 4. All model outputs are regridded to $1^{\circ} \times 1^{\circ}$ before other analysis, using first order conservative remapping method.
- 5. For the models with NOT only one realization, ensemble mean over the available realizations is used.
- 6. Yearly mean is calculated from monthly data. Each month is weighted with the number of days per month.
- Global value of each variable is used to calculate global gamma_int. Regional value of each variable is used to calculate regional gamma_int. For the calculation of gamma map, local value of each variable in each grid is utilized.
- 8. Before regression, each variable is detrended within each moving window (20 years).
- 9. Multiple regression analysis is used to calculate gamma_int.

Tropical γ_{nbp}^{int} during past 50 years

Wang XH, Piao SL, Ciais P, et al. (2014) Nature.

CMIP5 ESMs do NOT capture the changes in tropical γ_{nbp}^{int} during past 50 years

Multi-model mean ± 1 Standard deviation

Multi-model mean ± 1 Standard deviation

Multi-model mean \pm 1 Standard deviation

Multi-model-mean of temperature sensitivity γ_{nbp}^{int} in 1986-2005

Local climate variables are used to calculate all gamma maps.

 $\gamma_{
m nbp}^{
m int}$ in 2080-2099

Difference of γ_{nbp}^{int} between 2080-2099 and 1986-2005

Probability distribution of change in γ_{nbp}^{int} in CMIP5 models

$\gamma_{\rm nbp}^{\rm int} = \gamma_{\rm gpp}^{\rm int} - \gamma_{\rm ra}^{\rm int} - \gamma_{\rm rh}^{\rm int} + other factors$

Which factor dominates the changes in tropical γ_{nbp}^{int} ?

Difference of γ_{gpp}^{int} between 2080-2099 and 1986-2005

Difference of γ_{ra}^{int} between 2080-2099 and 1986-2005

Difference of γ_{rh}^{int} between 2080-2099 and 1986-2005

Dominant driving factors of γ_{nbp}^{int} from 1986 to 2099

Max $(\Delta \gamma_{gpp}^{int} / \Delta \gamma_{nbp}^{int}, -\Delta \gamma_{ra}^{int} / \Delta \gamma_{nbp}^{int}, -\Delta \gamma_{rh}^{int} / \Delta \gamma_{nbp}^{int}, \Delta other factor / \Delta \gamma_{nbp}^{int})$

 Δ : difference of γ^{int} between 2080-2099 and 1986-2005

- CMIP5 models do NOT capture the change of γ_{nbp}^{int} in tropical region during past 50 years.
- In Northern Hemisphere high latitudes and Southern Hemisphere temperate regions, γ_{nbp}^{int} remains stable over 1986 to 2099.
- Under all RCPs, tropical γ_{nbp}^{int} shows decrease trend over 1986 to 2099, and changes in γ_{gpp}^{int} is the dominant driving factor.

Thank you