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There are many models that attempt to predict physical processes in snow on the ground for a range of
applications, and evaluations of these models show that they have a wide range of behaviours. A review
of snow models, however, shows that many of them draw on a relatively small number of process param-
eterizations combined in different configurations and using different parameter values. A single model
that combines existing parameterizations of differing complexity in many different configurations to gen-
erate large ensembles of simulations is presented here. The model is driven and evaluated with data from
four winters at an alpine site in France. Consideration of errors in simulations of snow mass, snow depth,
albedo and surface temperature show that there is no ‘‘best’’ model, but there is a group of model con-
figurations that give consistently good results, another group that give consistently poor results, and
many configurations that give good results in some cases and poor results in others. There is no clear link
between model complexity and performance, but the most consistent results come from configurations
that have prognostic representations of snow density and albedo and that take some account of storage
and refreezing of liquid water within the snow.

� 2012 Published by Elsevier Ltd.
1. Introduction

Amongst other applications, models of physical processes in
snow on the ground are used in hydrological forecasting, numerical
weather prediction and climate modelling. Papers describing the
development of new snow models or improvements to existing
models usually include comparisons of model predictions with
observations (e.g. [3,6,16,32,34,99]). Other studies have contrasted
the performance of several models at a time (e.g. [10,36,44]), and
there have been a few major intercomparison projects evaluating
snow simulations by large numbers of models (e.g. [13,42,
90,95]). The organizers of such projects generally state that their
aim is not to identify a ‘‘best’’ model but rather to relate differences
in model behaviour to differences in model structure. Even this
better-defined aim is hard to achieve in intercomparison projects
because of complex interactions between the components within
models and differing choices between models for the values of
parameters that are often not well constrained [20]. As an alterna-
tive approach, this paper uses a single model with several options
for the representation of each process considered to be important;
the options are combined in every possible configuration to give a
large ensemble of simulations with different model structures.
Although it is taken to an unprecedented level here, the same phi-
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losophy underlies the Chameleon Surface Model (CHASM) [84], the
Cold Region Hydrological Model (CRHM) [85], the Framework for
Understanding Structural Errors in hydrological models (FUSE)
[18], the multi-parameterization version of the Noah land surface
model (Noah-MP) [78] and, more generally, the method of multiple
working hypotheses for hydrological modelling advocated by Clark
et al. [20]. Multi-model and perturbed model ensembles are now
widely used in environmental modelling; ensemble means are of-
ten thought to provide more reliable predictions than single model
realizations and ensemble spread is often taken as a measure of
uncertainty in predictions [9,48,51].

Many snow models and land-surface models with snow mod-
ules are in use, and there are many papers describing them; models
that will be referred to frequently in this paper are listed in Table 1.
Reading a large number of documentation papers reveals that a
small number of parameterizations are used time and time again
in different combinations in different models, so the models are
not all truly independent. The parameterizations of snow compac-
tion introduced by Anderson [3] and Verseghy [104] are each used
in several later models, for example. Many of the more physically-
based models reference papers from the 1970s by Colbeck [22] and
Anderson [3], although in fact they mostly adopt parameteriza-
tions from those papers as implemented in SNTHERM [60]. Our
expectation is that a model with options covering the range of
complexities currently used in representing particular processes
will span the range of behaviours found in current models and will
models using observations from an alpine site. Adv Water Resour (2012),
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Table 1
Example models.

BASE Slater et al. [94]
BATS Yang et al. [111]
CLASS Verseghy [104]
CLM Oleson et al. [80]
COUP Gustafsson et al. [54]
Crocus Vionnet et al. [105]
HTESSEL Dutra et al. [34]
IAP94 Dai and Zeng [26]
ISBA-ES Boone [11]
ISBA-FR Douville et al. [32]
JULES Best et al. [8]
MAPS Smirnova et al. [96]
MATSIRO Takata et al. [101]
MOSES Cox et al. [23]
Noah-MP Niu et al. [78]
SAST Sun et al. [99]
SiB Sellers et al. [92]
SNOBAL Marks et al. [70]
SNOWPACK Bartelt and Lehning [6]
SNTHERM Jordan [60]
SPONSOR Shmakin [93]
SSiB Xue et al. [109]
SWAP Gusev and Nasonova [53]
VIC Andreadis et al. [4]
VISA Yang and Niu [112]
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make those behaviours easier to understand. The ensemble is not
expected to span the full range of snow behaviours found in nature,
however; redistribution of snow by wind and interactions with
vegetation are important in many places but are not considered
in the model used here. The model was first developed to investi-
gate snow process parameterizations for the JULES community
land surface model [8] and so is named the JULES Investigation
Model (JIM) [103].

Conclusions from intercomparison projects relevant to this
study are briefly reviewed in Section 2. Data used here for model
driving and evaluation over four winters at one site are discussed
in Section 3, and options for representing snow processes are de-
scribed in Section 4. Simulations of particular processes in isolation
from the rest of the model are compared with observations where
possible before results from the full ensemble of simulations are
presented in Section 5 and compared with observations in
Section 6.
Fig. 1. Measurements of snow mass (circles) compared with simulations by the 23 mo
described here (grey lines). Note that the driving data supplied for Sleepers River ended
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2. Snow model intercomparisons

At least five intercomparison projects have specifically consid-
ered snow processes or regions with significant seasonal snow cov-
er: PILPS2d [91,95], PILPS2e [13,76], Rhône-AGG [12], SnowMIP
[38,42] and SnowMIP2 [41,90]. More than 50 models have partic-
ipated in one or more of these projects, and six models (CLASS,
ISBA, MOSES, SPONSOR, SSiB and SWAP) have participated in all
five. Snow processes have also been considered in global simula-
tions compared by the Atmospheric Model Intercomparison Pro-
ject [49], the Global Soil Wetness Project [30] and the Water
Model Intercomparison Project [55].

Despite overlap in parameterizations and close family relation-
ships between some models, intercomparison studies have shown
that models differ greatly in their predictions of snow accumula-
tion and ablation. As an example, Fig. 1 shows observations and
simulations of snow mass at the four sites used in SnowMIP
[38,42]. The spread among the 23 participating models increases
when snow is melting, either during the winter or in spring, so
simulation of snow is more challenging for warmer sites where
mid-winter melt events are more likely. Some models took total
precipitation as an input and used their own methods to partition
it into snowfall and rainfall amounts differing from those provided
in the driving data; this is particularly apparent for two of the Col
de Porte simulations. Errors in simulations of net shortwave radia-
tion were larger than errors in net longwave radiation and did not
appear to be strongly influenced by model complexity. In some
cases, models that simulated snow melt well had poor simulations
of snow albedo.

Thirty-three models performed simulations for five pairs of
open and forested sites in SnowMIP2 [41,90]. The duration of snow
cover was generally predicted well, but there was a broad range in
simulations of maximum snow mass, particularly at warmer sites
and in warmer winters. There was little consistency in model per-
formance between sites and years, so no overall best model could
be identified.

Twenty-one models submitted simulations driven by 18 years
of meteorological observations for a grassland site at Valdai, Russia
for PILPS2d [91,95]. The models as a group captured the broad fea-
tures of snow accumulation and ablation, but differences in predic-
tions of mid-winter melt led to systematic scatter between models.
dels that participated in SnowMIP (black lines) and the 1701 model configurations
on 31 May 1997, at which time not all of the models had melted all of the snow.

models using observations from an alpine site. Adv Water Resour (2012),
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Snow albedo, fractional snow cover and model structure had large
and interacting influences on the absorption and partitioning of
energy by snow. The best combination of parameterizations could
not be discerned.

Twenty years of driving data were provided for 218 0.25� grid
cells covering the Torne and Kalix river basins in northern Scandi-
navia and 21 models participated in PILPS2e [13,76]. The experi-
ment was partly limited by the poor availability of reliable
precipitation and radiation data, which is a common problem for
high latitude studies. All of the models captured the broad dynam-
ics of snow melt and runoff, but there were large differences be-
tween models, particularly during the spring melt period.
Differences between predictions of annual runoff were primarily
related to differences in predictions of winter snow sublimation,
for which the models’ formulations of aerodynamic resistances
and stability corrections were important. Differences in how mod-
els represented retention of melt water in snow influenced the
timing of peaks in runoff rather than their magnitude. The com-
plexity of the participating models made the interpretation of re-
sults difficult, and differences in model complexity did not
explain differences in results. Those models that took the opportu-
nity offered to calibrate parameters using data from small catch-
ments had lower errors in runoff simulations for the whole basin
than those that did not.

Rhône-AGG [12] investigated the impact of spatial scale on sim-
ulations of water balance in the Rhône basin, for which about 10%
of the annual precipitation is snow. Of the 15 land surface models
participating, those that included explicit snow schemes gave the
best simulations of snow depth in comparison with observations
at 24 sites and had consistently larger snow depths than simpler
composite schemes.
3. Model driving and evaluation data

Data from the Météo-France site at Col de Porte (45.3�N, 5.77�E,
1325 m a.s.l.) in the Chartreuse massif near Grenoble are used in
this study. Snow lies for about 5 months each year (from December
to April) and the maximum snow depth has reached 1.5 m in re-
cent years (greater snow depths occurred in the 1960s). The main
melting period begins in March or April, but air temperatures can
rise above 0 �C and rain can fall in any month of the year. The
snowpack is often wet and is typical of mid-elevation, mid-latitude
Fig. 2. Ten-day running means of incoming shortwave radiation, incoming longwave ra
(thick black lines), 2006–2007 (dashed lines), 2007–2008 (dotted lines) and 2008–2009

Please cite this article in press as: Essery R et al. A comparison of 1701 snow
http://dx.doi.org/10.1016/j.advwatres.2012.07.013
mountain ranges. Col de Porte data have been used in SnowMIP
and numerous other snow modelling studies (e.g.
[10,15,16,36,97,100,105,110]). Four winters, beginning in 2005,
are considered here; meteorological conditions are shown in
Fig. 2. Compared with 2005–2006, the winter of 2006–2007 was
warmer and less snowy, 2007–2008 was warmer and more snowy,
and 2008–2009 was similar.

Energy balance models typically require inputs of incoming
shortwave radiation SW# (W m�2), incoming longwave radiation
LW# (W m�2), rainfall rate Rf (kg m�2 s�1), snowfall rate Sf

(kg m�2 s�1), air temperature Ta (K), relative humidity RH (%), wind
speed Ua (m s�1) and atmospheric pressure Pa (Pa). All of these
variables are measured at Col de Porte: air temperature, humidity
and pressure are measured once an hour, precipitation amounts
are cumulated and radiation fluxes and wind speed are averaged
over each hour. Air temperature and humidity are measured at
height zT ¼ 2 m above the snow surface and wind speed at
zU ¼ 10 m. Relative humidity can be converted to specific humidity

Qa ¼ ðRH=100ÞQ satðTa; PaÞ; ð1Þ

where Q sat is the saturation specific humidity.
Data from many sites have been used for snow modelling, but

the systems installed at Col de Porte provide data of unusually high
quality and completeness [74]. Shortwave and longwave radiation
sensors are mounted on a rotating arm which automatically passes
through a cleaning and defrosting unit every hour, eliminating the
need for continuous heating or ventilation. Heated gauges provide
separate measurements of rainfall and snowfall , corrected for
undercatch as a function of wind speed following Forland et al.
[47]. Temperature and humidity sensors are mounted on a vertical
rail and adjusted weekly to maintain their height relative to the
snow surface.

Variables measured at Col de Porte which can be used for model
evaluation include outgoing shortwave and longwave radiation,
from which surface albedo and temperature can be calculated.
Snow depth is measured both manually and automatically by
ultrasonic ranging. Snow mass data used in previous model evalu-
ations have mostly come from infrequent manual gravimetric mea-
surements, but snow mass is also measured using a cosmic ray
attenuation sensor [61,82] installed at Col de Porte by the Division
Technique Générale of the EDF energy company. Calibration of this
sensor against manual snow mass measurements on a yearly basis
diation and air temperature, and cumulative snowfall at Col de Porte in 2005–2006
(thin black lines).

models using observations from an alpine site. Adv Water Resour (2012),
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Table 2
Physical constants and quantities taken as constant in JIM.

Constant Value Description

ci 2100 J K�1 kg�1 Specific heat capacity of ice
ca 1005 J K�1 kg�1 Specific heat capacity of air
cw 4180 J K�1 kg�1 Specific heat capacity of water
g 9.81 m s�2 Acceleration due to gravity
k 0.4 Von Kàrmàn constant
Lc 2:501� 106 J kg�1 Latent heat of condensation

Lf 0:334� 106 J kg�1 Latent heat of fusion

Ls 2:835� 106 J kg�1 Latent heat of sublimation

ka 0.025 W m�1 K�1 Thermal conductivity of air
ki 2.24 W m�1 K�1 Thermal conductivity of ice
R 287 J K�1 kg�1 Gas constant for dry air
qi 917 kg m�3 Density of ice
qw 1000 kg m�3 Density of water
r 5:67� 10�8 W m�2 K�4 Stefan–Boltzmann constant

Tm 273.15 K Melting point
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provides accurate interpolation of weekly manual measurements
to the daily time scale. Automatic snow mass and depth measure-
ments generally agree well with manual measurements and typi-
cally show snow densities approaching 400 kg m�3 towards the
end of each winter at Col de Porte. Because the measurements
are not all made at exactly the same point, however, inconsisten-
cies can arise due to spatial variations in the snow cover, particu-
larly for shallow snow conditions as in 2006–2007.

4. Model structure

Physical snow models are based on mass and energy conserva-
tion equations. Model developers have to make decisions about
how to parameterize (or neglect) flux terms in these equations,
how to parameterize the thermal, hydraulic, mechanical and radi-
ative properties of snow that determine the fluxes, how to select
values for parameters and how to solve the equations. JIM uses a
range of previously published parameterizations in different com-
binations, with the same numerical solution method in all cases.

The mass per unit volume of snow can be divided into solid ice
and liquid water contents ci and cw with separate conservation
equations. Neglecting horizontal water flow and horizontal trans-
port of snow by wind and avalanches (all of which can be repre-
sented by specialized models), these equations are

@ci

@t
¼ @Q i

@z
�m ð2Þ

and

@cw

@t
¼ @Q w

@z
þm; ð3Þ

where z is height above the ground, m is a volumetric rate of phase
change (positive for melt and negative for refreezing) and Qi and Qw

are vertical solid and liquid mass fluxes (positive downwards).
Boundary conditions for Eqs. (2) and (3) are given by

Q i ¼ Sf � Ei; Q w ¼ Rf � Ew ð4Þ

at the snow surface and

Q i ¼ 0; Qw ¼ R0 ð5Þ

at the base of the snowpack, where Ei is sublimation of ice, Ew is
evaporation of liquid water and R0 is drainage of liquid water. The
snow density is qs ¼ ci þ cw. Total ice mass, liquid water mass
and melt rate per unit ground area for a snowpack of depth ds are
given by

I ¼
Z ds

0
ciðzÞdz; ð6Þ

W ¼
Z ds

0
cwðzÞdz ð7Þ

and

M ¼
Z ds

0
mðzÞdz: ð8Þ

Snow water equivalent depth (SWE) is often quoted interchange-
ably with total mass per unit area, although strictly they are related
by I þW ¼ qwSWE; assuming qw ¼ 1000 kg m�3 for the density of
water gives 1 mm water equivalent � 1 kg m�2.

Neglecting penetration of shortwave radiation and advection of
heat by liquid water (both of which are included in some models),
conservation of energy in a snowpack with vertical temperature
profile Tsðz; tÞ gives

cs
@Ts

@t
¼ @G
@z
� Lf m; ð9Þ
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where cs ¼ cici þ cwcw is the volumetric heat capacity of the snow, G
is vertical heat flux and Lf is the latent heat of fusion (constants that
are not otherwise defined in equations are given in Table 2). JIM has
separate prognostic variables for snow temperature and liquid
water content, but this is not actually necessary; both can be diag-
nosed from a prognostic heat content csðTs � TmÞ � Lf cw [68].

JIM follows those models that balance net radiation with sensi-
ble, latent and conducted heat fluxes for an infinitesimal surface
skin layer at temperature Tss, giving

ð1�asÞSW# þ�ðLW# �rT4
ssÞ¼HsþLsEiþLcEwþLf MsþQ p�GðdsÞ;

ð10Þ

where as is the snow albedo, � is the surface emissivity (invariably
set to a constant close to or equal to 1 for snow), Ms is surface melt
rate, Qp is heat advected by precipitation (included in some models
but neglected here) and Hs is the sensible heat flux from the snow to
the atmosphere. When parameterizations for the fluxes are inserted
on the right-hand side, this becomes a nonlinear equation for Tss

which can be solved by iteration or linearization; an algebraic solu-
tion of the linearized equation, following Best et al. [8], is used in
JIM for computational efficiency. The net flux GðdsÞ at the snow sur-
face provides an upper boundary condition for Eq. (9), and the heat
flux at the base of the snowpack is calculated by coupling to a soil
model adapted from JULES [8]. The melt rate is diagnosed by ensur-
ing that the snow surface temperature does not exceed 0 �C.

Numerical solution of the coupled mass and energy conserva-
tion equations requires discretization in space and time, and Clark
and Kavetski [19] have shown that the choice of numerical solution
method has large influences on hydrological model predictions.
Strong vertical temperature, density and liquid water content gra-
dients can develop in snow, and many thin models layers have to
be used if these gradients are to be explicitly represented by finite
differences. Boone et al. [12] classified snow models as ‘‘compos-
ite’’ if they calculate a surface energy balance for a combined layer
of snow and soil and ‘‘explicit’’ if they use one or more distinct lay-
ers to represent snow. Rather than having a fixed number of layers
as soil models do, multi-layer snow models use increasing num-
bers of layers with increasing snow depth up to some maximum
number. This number is arbitrary in SNOWPACK, 50 in Crocus, 5
in CLM, 3 in ISBA-ES, MATSIRO and SAST, 2 in SNOBAL and VIC
and user specified in JULES. BASE, CLASS and HTESSEL are single-
layer explicit models, and ISBA-FR, MOSES and SSiB are composite
models. JIM uses a maximum of three layers, with a fixed surface
layer depth of 0.1 m when the snow depth exceeds 0.2 m and a
fixed second layer depth of 0.2 m when it exceeds 0.5 m. Eq. (10)
is solved analytically to find the surface net heat flux and melt rate,
models using observations from an alpine site. Adv Water Resour (2012),
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and Eq. (9) is then solved by the Crank–Nicolson method [25],
initially assuming no phase changes within layers. If liquid content
exceeds the capacity of a layer, water is then drained to the next
lowest layer. Finally, liquid water in any layer with a temperature
below 0 �C is frozen and the liquid water content, ice content and
temperature of the layer are adjusted according to Eqs. (2), (3) and
(9). A fixed timestep of 3600 s is used, which matches the period of
the driving data.

To calculate fluxes in the mass and energy balance equations,
models require parameterizations of processes determining the al-
bedo, thermal conductivity, liquid water content and fractional
coverage of snow on the ground, the density of fresh and com-
pacted snow and exchanges of heat and moisture between snow
and the atmosphere. Drawing on existing models for each process,
JIM aims to provide a physically-based parameterization option, an
empirical parameterization option and an option in which a pro-
cess is represented by a constant or simply neglected. In some
cases, such as for the parameterization of fresh snow density, there
are only empirical parameterizations in common use; three op-
tions are then selected to represent a range of current models.
Parameterizations are described in the following subsections, with
examples of models using each option. Some models offer choices
of parameterizations or have used different parameterizations at
different times in their development, so particular models are
sometimes mentioned more than once in a subsection. Different
models may use the same parameterization for a particular process
but choose different parameter values, so a literature source is gi-
ven for every parameter set.

4.1. Snow compaction

The density of snow generally increases over time due to set-
tling of grains as they metamorphosize into more rounded forms,
compaction under the weight of overlying snow and refreezing of
melt water. Models often parameterize the thermal conductivity
and liquid water capacity of snow as functions of density (see Sec-
tions 4.6 and 4.7) and density is required for diagnosis of snow
depth from mass. Snow mass is a model state variable, but snow
depth is much more commonly measured, so modelled values of
snow density are used with measurements of depth to initialize
snow mass in forecasting models [14,33]. Physical, empirical and
constant compaction options are available in JIM.

4.1.1. Option 0: physical snow compaction parameterization
CLM, COUP, HTESSEL, IAP94, ISBA-ES, SAST, SNTHERM, VIC and

VISA all use a compaction parameterization following Anderson [3]
in which there is rapid settling of fresh, low density snow followed
by slower densification under load resisted by a compactive viscos-
ity. The rate of change in the density qs of a snow layer with tem-
perature Ts and overlying mass Ms is given by

1
qs

dqs

dt
¼ Msg

g
þ c1 exp½�c2ðTm � TsÞ � c3 maxð0;qs � q0Þ�; ð11Þ
Table 3
Parameter values for snow compaction parameterizations.

Option Equations Parameters

0 (11) and (12) Boone [11]

c1 ¼ 2:8� 10�6 s�1 c2 ¼ 0:042 K�1

c3 ¼ 0:046 m3 kg�1 c4 ¼ 0:081 K�1

c5 ¼ 0:018 m3 kg�1 q0 ¼ 150 kg m�3

g0 ¼ 3:7� 107 kg m�1 s�1

1 (14) Verseghy [104]
qmax ¼ 300 kg m�3 sq ¼ 3:6� 105 s

2 Constant Cox et al. [23] qs ¼ 250 kg m�3

Please cite this article in press as: Essery R et al. A comparison of 1701 snow
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where the viscosity is

g ¼ g0 exp½c4ðTm � TsÞ þ c5qs�: ð12Þ

Values for the seven parameters in Eqs. (11) and (12) given in Ta-
ble 3 are taken from ISBA-ES. A slightly simplified form of Eq. (11)
without the c1 term for initial compaction is used by BASE, JULES
and Lynch-Stieglitz [68]. Quite different values for g0 are used by
BASE (107 Pa s), CLM (8:8� 106 Pa s), ISBA-ES (3:7� 107 Pa s) and
SNTHERM (3:6� 106 Pa s), even though they all quote the same
sources.

4.1.2. Option 1: empirical snow compaction parameterization
A hypothesis that snow density increases at a rate proportional

to the difference between the current density and a maximum
attainable density qmax can be expressed as a differential equation

dqs

dt
¼ s�1

q ðqmax � qsÞ; ð13Þ

where sq is an empirically determined compaction time scale. Inte-
grating over a timestep of length dt then gives

qsðt þ dtÞ ¼ qmax þ ½qsðtÞ � qmax� expð�dt=sqÞ: ð14Þ

This difference equation is used for snow compaction in CLASS,
HTESSEL and ISBA-FR. Values for the two parameters given in Ta-
ble 3 were obtained by Verseghy [104] from earlier field
measurements.

4.1.3. Option 2: constant snow density
Some models, including MAPS, MATSIRO, MOSES and SiB, ne-

glect compaction and take fixed values for qs. The value of
250 kg m�3 given in Table 3 is used by MOSES.

4.1.4. Comparison of compaction parameterizations
Coupled to a parameterization of fresh snow density (4.2) but

isolated from the rest of the snow model, compaction parameter-
izations can be simply driven with measured snowfall and snow
temperature inputs as long as there is no freezing of infiltrating
water. Fig. 3 shows observations and simulations of snow depth
and density for the cold period between December 2005 and Feb-
ruary 2006. Option 0 gives the best simulation of density, and the
constant density in option 2 can at best be a compromise between
an overestimate for fresh snow and an underestimate for com-
pacted snow. Deficiencies in option 1 for simulating snow densities
at Col de Porte and other SnowMIP sites were identified by Bartlett
et al. [7] and Dutra et al. [34]; as a result, a new parameterization
was developed for version 3.1 of CLASS and the SNTHERM param-
eterization has now been adopted in HTESSEL.

4.2. Fresh snow density

The density of newly deposited snow depends on the size, shape
and packing of the snow crystals, which depend on temperature
and humidity during their formation and wind during deposition
(Zwart et al., this volume), but there are no physical models of
the deposition process in use. Crocus, HTESSEL and ISBA-ES use
an empirical function of air temperature and wind speed for fresh
snow density

qf ¼max½af þ bf ðTa � TmÞ þ cf U
1=2
a ;qmin� ð15Þ

based on measurements at Col de Porte, and CLM and Noah use a
function of temperature alone

qf ¼ qmin þmax½df ðTa � Tm þ ef Þ3=2
;0� ð16Þ

from Anderson [3]; parameter values are given in Table 4. Other
empirical parameterizations are given by Hedstrom and Pomeroy
models using observations from an alpine site. Adv Water Resour (2012),
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Fig. 3. Snow depth and density from manual measurements (circles) in 2005–2006 and simulations with compaction parameterization options 0 (solid lines), 1 (dashed
lines) and 2 (dotted lines). The grey line shows snow depth measured by an ultrasonic gauge.

Table 4
Parameter values for fresh snow density parameterizations.

Option Equations Parameters

0 (15) Boone [11]
af ¼ 109 kg m�3 bf ¼ 6 kg m�3 K�1

cf ¼ 26 kg m�7/2 s1/2 qmin ¼ 50 kg m�3

1 (16) Oleson et al. [80] df ¼ 1:7 K�1

ef ¼ 15 K qmin ¼ 50 kg m�3

2 Constant Douville et al. [32] qf ¼ 100 kg m�3
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[56], Fassnacht and Soulis [43], Lehning et al. [63] and Roebber et al.
[87]. Eqs. (15) and (16) are taken as options 0 and 1 for JIM, and op-
tion 2 is to use a fixed density for fresh snow as in BASE, BATS,
CLASS, HTESSEL, ISBA-FR, JULES, SiB and SPONSOR. A density of
100 kg m�3 corresponds with the popular rule-of-thumb that 1 cm
of snowfall contains 1 mm of water [87], but lower densities of 50
or 80 kg m�3 are also used in some models.

Fresh snow density can be estimated by dividing hourly mea-
surements of snowfall by hourly changes in measured snow depth;
results for the four years of hourly data used here, shown in
Fig. 4(a), are highly scattered. Averaging the data into 2 �C temper-
ature classes for wind speeds greater than or less than 2 m s�1

shows a clear increase in fresh snow density with increasing air
temperature and some increase for greater wind speeds.

A variable snowfall density cannot be used if a fixed density is
used for snow on the ground. In either the physical or empirical
snow compaction options, however, the bulk density of a snow
layer with initial density qs0 and mass Ms after addition of an
amount Sf dt of snowfall with density qf is

qs ¼
Ms þ Sf dt

Ms=qs0 þ Sf dt=qf
: ð17Þ
Fig. 4. (a) Fresh snow densities from hourly snowfall and depth change measurements (
circles) and greater than 2 m s�1 (open circles) and compared with parameterization opt
line) and option 2 (dotted line). The cross shows the average temperature and density
gauge (grey line) in January 2006 and simulated with the physical compaction option an
(dotted line).
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As an example of the influence of snowfall on depth, Fig. 4(b) shows
the increase in snow depth and compaction following a snowfall
event on 18 January 2006. 49 mm water equivalent of snow fell
over 18 h at temperatures around �1 �C and wind speeds up to
2.2 m s�1. In this case, fresh snow density options 0 and 1 match
the initial 30 cm increase in snow depth well but it is overestimated
by option 2. Densification of the snow over a few days thereafter
using the physical compaction option reduces the difference in
snow depths given by the different fresh snow density parameteri-
zation options.

4.3. Snow albedo

The fraction of shortwave radiation reflected from snow is high
and depends on the grain structure, contaminant concentration
and depth of the snow. This has major impacts on the energy bal-
ance of snow-covered surfaces, the timing of snow melt and cli-
mate feedbacks involving changes in snow cover. Because
reflection from snow also depends strongly on the wavelength
and incidence angle of radiation, however, the hemispherically
and spectrally averaged albedo is not an intrinsic property of a
snow surface but also depends on the angular and spectral distri-
bution of the incident radiation. Spectral models such as those of
Wiscombe and Warren [108], Green et al. [50] and Kokhanovsky
and Zege [62] can predict snow reflectance in great detail but are
too computationally expensive for use in energy balance snow
models. Some parameterizations instead calculate a single snow
albedo and others calculate separate albedos for direct-beam and
diffuse radiation in visible and near-infrared wavebands.

4.3.1. Option 0: physical snow albedo parameterization
Efficient parameterizations developed by Marshall and Warren

[72] and Marks and Dozier [69] from the spectral snow albedo
small dots), averaged into 2 �C temperature classes for wind speeds less than (solid
ion 0 for 0 and 2 m s�1 wind speeds (lower and upper solid lines), option 1 (dashed
for all recorded snowfall events. (b) Snow depth measured by the ultrasonic depth
d fresh snow density parameterization options 0 (solid line), 1 (dashed line) and 2

models using observations from an alpine site. Adv Water Resour (2012),
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model of Wiscombe and Warren [108] have been adopted in
MOSES and SNOBAL and implemented in the NCAR community cli-
mate model [71]. Flanner and Zender [45,46] have developed a
new snow microphysics and albedo model that has now been
adopted in CLM4 [81] and is likely to be widely used in the future,
but another parameterization based on Wiscombe and Warren
[108] with a longer history of use in snow models is taken as the
most physical snow albedo option in JIM; it was introduced by
Dickinson et al. [29] for use in BATS and has also been used in
CLM3, IAP94, Noah-MP and the model of Jin et al. [59]. There are
10 parameters, values for which are listed in Table 5. Albedos for
diffuse radiation in the visible and near-infrared bands are

adif ; vis ¼ ð1� CvisFageÞavis;0 ð18Þ

and

adif ; nir ¼ ð1� CnirFageÞanir;0 ð19Þ

with snow age factor

Fage ¼
ss

1þ ss
: ð20Þ

The non-dimensional snow age ss increases with time and is de-
creased by snowfall according to

ssðt þ dtÞ ¼ ½ssðtÞ þ ðr1 þ r2 þ r3Þs�1
0 dt� 1� Sf dt

S0

� �
ð21Þ

with

r1 ¼ exp Ta
1

Tm
� 1

Ts

� �� �
ð22Þ

representing the effect of grain growth due to vapour diffusion,
r2 ¼ r10

1 representing more rapid growth close to the melting point
and constant r3 representing the effect of contaminants in the snow.
The visible and near-infrared albedos for direct-beam radiation are

adir; vis ¼ adif; vis þ alf ðlÞð1� adif; visÞ ð23Þ

and

adir; nir ¼ adif; nir þ alf ðlÞð1� adif; nirÞ; ð24Þ

where

f ðlÞ ¼max
1� 2l
1þ bll

;0
� �

ð25Þ

for solar zenith cosine l, giving increased albedos for zenith angles
greater than 60�.

4.3.2. Option 1: empirical snow albedo parameterization
Similarly to the empirical snow compaction parameterization

described in Section 4.1.2, empirical snow albedo decay parame-
terizations can be formulated as differential equations and inte-
Table 5
Parameter values for snow albedo parameterizations.

Option Equations Parameters

0 (18)–(25) Oleson et al. [80]
avis;0 ¼ 0:95 anir;0 ¼ 0:65 al ¼ 0:4
bl ¼ 2 Cnir ¼ 0:5 Cvis ¼ 0:2
r3 ¼ 0:3 S0 ¼ 10 kg m�2 Ta ¼ 5000 K

s0 ¼ 106 s

1 (26)–(28) Douville et al. [32]
amax ¼ 0:85 amin ¼ 0:5 S0 ¼ 10 kg m�2

sa ¼ 107 s sm ¼ 3:6� 105 s

2 (29) Cox et al. [23]
amax ¼ 0:8 amin ¼ 0:62 Tc ¼ Tm � 2 K
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grated to give the change in albedo over a timestep. The
empirical option selected for JIM is taken from ISBA and HTESSEL,
in which albedo has a linear decay with time

asðt þ dtÞ ¼ asðtÞ � s�1
a dt ð26Þ

for cold snow and an exponential decay

asðt þ dtÞ ¼ ½asðtÞ � amin� expð�s�1
m dtÞ þ amin ð27Þ

for melting snow. Snowfall refreshes the snow albedo by an amount

das ¼ ðamax � asÞ
Sf dt
S0

ð28Þ

up to the maximum fresh snow albedo amax. The five parameters for
this option are given in Table 5. CLASS and Noah-MP use the same
approach, except that Eq. (27) is used for both cold and melting
snow with different values of amin and different maximum albedos
are used for visible and near-infrared wavelengths.

4.3.3. Option 2: snow temperature albedo parameterization
Although the snow albedo parameterizations described in Sec-

tions 4.3.1 and 4.3.2 are simple to code, they do require prognostic
snow albedo or age variables to be held in memory. Although it is
no longer a limitation, it used to be common for global climate mod-
els to avoid this computational expense by simply diagnosing snow
albedo as a function of surface temperature, and such models are
still in common use; examples include the snow albedo parameter-
izations in the ECHAM3 [28] and HadCM3 [23] climate models and
SiB in the CSU and COLA climate models [86,109]. Typically, the al-
bedo is made to decrease linearly from a maximum value below a
critical temperature to a minimum at the melting point, according to

as ¼ amax þ ðamin � amaxÞmax
Ts � Tc

Tm � Tc
;0

� �
: ð29Þ

Parameter values used here are given in Table 5.

4.3.4. Comparison of albedo parameterizations
All of the snow albedo parameterization options require snow-

fall and snow temperature as inputs. In the full model, snowfall is
provided by observations and temperature is determined by en-
ergy balance, but the albedo parameterizations can be decoupled
from their role in the surface energy balance by using observed
surface temperature as an input; this approach was used in evalu-
ations of snow albedo parameterizations from weather forecasting
and climate models by Pedersen and Winther [83] and Wang and
Zeng [107]. The direct and diffuse fluxes in spectral bands required
by parameterizations that calculate separate albedos are simulated
by the radiative transfer schemes in atmospheric models but are
seldom measured and were not provided in any of the major inter-
comparison projects discussed above. Global all-band shortwave
radiation measurements at Col de Porte are regularly partitioned
into direct and diffuse spectral components for driving Crocus,
and the same components are used here for driving snow albedo
parameterization option 0.

Observations and simulations of albedo in 2005–2006 are
shown in Fig. 5. The effective albedo for thin or partial snow cover
is taken to be

a ¼ fsas þ ð1� fsÞa0; ð30Þ

where a0 is the snow-free albedo and the fraction fs is given by Eq.
(51) in Section 4.5. All of the albedo parameterization options cap-
ture the rapid transition from a low snow-free albedo to a high
snow-covered albedo in November and back again in April, with a
general decrease in albedo over the winter interrupted by snowfall
events. Option 2 gives some spurious decreases in albedo during
short warm periods.
models using observations from an alpine site. Adv Water Resour (2012),
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Fig. 5. Albedo measured in 2005–2006 (circles) and simulated with albedo
parameterization options 0 (solid line), 1 (dashed line) and 2 (dotted line).
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4.4. Surface heat and moisture fluxes

First-order closure is widely used to parameterize turbulent ex-
changes of heat and moisture between the atmosphere and the
surface. Bulk aerodynamic formulae give sensible heat flux

H ¼ qacaCHUaðTss � TaÞ ð31Þ

and moisture flux

E ¼ qaCHUa½Q satðTss; PaÞ � Qa�; ð32Þ

where qa ¼ Pa=ðRTaÞ is the air density and CH is an exchange coeffi-
cient, assumed to be the same for heat and moisture transport. Sim-
ilarly, the flux of momentum from the atmosphere to the surface is
parameterized as

s ¼ �qaCDU2
a ¼ �qau2

� ð33Þ

for drag coefficient CD; this defines the friction velocity u�.
Drag and exchange coefficients depend on atmospheric stratifi-

cation, a surface roughness length for momentum (z0) and a scalar
surface roughness length (z0h) for heat and moisture exchanges.
Values of z0 and z0h are flow-dependent [5], but the common model
assumption of constant values is used here. The same surface
roughness values, given in Table 6, are used for all three surface
flux options in JIM.

4.4.1. Option 0: Obukhov length parameterization
Atmospheric stratification can be characterized by the Obukhov

length

L ¼ �qacau3
�Ta

kgH
ð34Þ

(strictly, the temperature here is the virtual potential temperature,
not the air temperature). Monin–Obukhov similarity theory then
gives the drag and exchange coefficients as

CD ¼ k2 ln
zU

z0

� �
� wm

zU

L

� �
þ wm

z0

L

� �� ��2

ð35Þ

and

CH ¼ kC1=2
D ln

zT

z0h

� �
� wh

zT

L

� �
þ wh

z0h

L

� �� ��1

: ð36Þ
Table 6
Parameter values for surface flux parameterizations.

Option Equations Parameters

0 (40) and (41) Zeng et al. [114]
a ¼ 16 b ¼ 5 Ricr ¼ 1

1 (49) and (50) Louis [67] c ¼ 5

2 (48) Martin and Lejeune [73]
All z0 ¼ 0:01 m z0=z0h ¼ 0:1
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The stability functions wm and wh are integrals

wm;h ¼
Z z=L

0

1� /m;hðfÞ
f

df ð37Þ

over the dimensionless ratio f ¼ z=L, where the gradient functions
are

/m ¼
kz
u�

dUa

dz
ð38Þ

and

/h ¼ �kzu�
qaca

H
dTa

dz
: ð39Þ

Many functional forms for /m and /h are given in the literature;
the review by Andreas [5] discusses which are most appropriate for
use over snow surfaces. The functions chosen here are

/mðfÞ ¼
ð1� afÞ�1=4 f < 0
1þ bf 0 6 f 6 1
bþ f f > 1

8><
>: ð40Þ

and

/hðfÞ ¼
ð1� afÞ�1=2 f < 0
1þ bf 0 6 f 6 1
bþ f f > 1

8><
>: ð41Þ

with parameter values given in Table 6; these are taken from Zeng
et al. [114] and are used in CLM. Obukhov length parameterizations
are also used in COUP, HTESSEL, JULES, Noah-MP, SNOBAL, SWAP,
VIC and VISA.

Integrating /m and /h from Eqs. (40) and (41) gives

wmðfÞ ¼ 2 ln
1þ x

2

� �
þ ln

1þ x2

2

� �
� 2 tan�1 xþ p

2
ð42Þ

and

whðfÞ ¼ 2 ln
1þ x2

2

� �
ð43Þ

with x ¼ ð1� afÞ1=4 for f < 0,

wmðfÞ ¼ whðfÞ ¼ �bf ð44Þ

for 0 6 f 6 1, and

wmðfÞ ¼ whðfÞ ¼ ð1� bÞð1þ ln fÞ � f ð45Þ

for f > 1.
Another measure of stratification, the gradient Richardson

number, is related to the Obukhov length by

Ri ¼ f/hðfÞ
/2

mðfÞ
: ð46Þ

If Ri approaches a critical value Ricr as f!1, the surface decouples
from the atmosphere (CH ¼ 0) for Richardson numbers exceeding
Ricr and radiative cooling can lead to unrealistically low surface
temperatures [27]. The choices for /m and /h in Eqs. (40) and (41)
give Ricr ¼ 1, and Anderson [3] used stability functions with
Ricr ¼ 0:2 which were found to give poor simulations when used
in SNTHERM [60] and Crocus [73].

4.4.2. Option 1: Richardson number parameterization
The use of Monin–Obukhov similarity theory to calculate sur-

face fluxes in early numerical weather prediction and climate mod-
els presented two problems addressed by Louis [67]: the
computational cost of the iterative solution required for unstable
conditions and surface decoupling in stable conditions. Instead,
models using observations from an alpine site. Adv Water Resour (2012),
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the exchange coefficient can be parameterized as CH ¼ FHðRiBÞCHN

where FH is a function of the bulk Richardson number

RiB ¼
gzUðTa � TssÞ

TaU2
a

ð47Þ

and

CHN ¼ k2 ln
zU

z0

� �� ��1

ln
zT

z0h

� �� ��1

ð48Þ

is the exchange coefficient for neutral stratification (RiB ¼ 0). Louis
[67] approximated the iterative solution by an analytical function

FHðRiBÞ ¼ 1� 3cRiB

1þ 3c2CHNð�RiBzU=z0Þ1=2 ð49Þ

for the unstable case (RiB < 0) and chose a function

FHðRiBÞ ¼ 1þ 2cRiB

ð1þ RiBÞ1=2

" #�1

ð50Þ

with no critical cutoff for the stable case (RiB > 0); a value for the
single parameter c in Eqs. (49) and (50) is given in Table 6. Richard-
son number parameterizations with differing stability functions are
used by BASE, BATS, CLASS, Crocus, IAP94, ISBA, MOSES and
SNTHERM.

4.4.3. Option 2: constant exchange coefficient
Although SNOWPACK and Crocus are amongst the most sophis-

ticated models in their representations of snow structure, they have
options to use simple representations of turbulent fluxes in which
stratification is neglected and constant values are taken for the ex-
change coefficient. Martin and Lejeune [73] obtained an average va-
lue of CH ¼ 0:0034 for wind speeds higher than 1 m s�1 by adjusting
the exchange coefficient in Crocus to match simulated surface tem-
peratures with nighttime observations at Col de Porte. This corre-
sponds with a value of z0 ¼ 0:015 m in Eq. (48); the roughness
lengths in Table 6 give a similar value of CH ¼ 0:003.

4.4.4. Comparison of surface flux parameterizations
Turbulent fluxes can be measured by eddy covariance or profile

methods, and gradient functions can be fitted to data from simul-
taneous measurements by both methods. Such measurements are
not regularly made at Col de Porte but would likely give highly
site-specific results due to the complexity of the surrounding
topography and forest cover. First-order closure is unable to repre-
sent the non-local scaling of turbulence over complex landscapes
[57] and requires the use of effective parameter values; the cali-
brated roughness length for Col de Porte is an order of magnitude
larger than textbook values given by, for example, Oke [79].

Fig. 6(a) shows CH calculated by options 0–2 as functions of RiB.
Compared with option 0, the exchange coefficients for strongly sta-
ble conditions are higher in option 1 and much higher in option 2.
Fig. 6. (a) Exchange coefficients as functions of bulk Richardson number for surface fl
Histogram of bulk Richardson number values calculated from hourly air temperature, su
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A histogram of bulk Richardson number values calculated with ob-
served surface temperature, air temperature and wind speed is
shown in Fig. 6(b). The distribution is strongly peaked near 0 but
has long tails, and RiB exceeded 1 for half of the hours between 1
October 2005 and 31 May 2006; option 0 will cut off the turbulent
fluxes to the surface in these cases.

4.5. Snow cover fraction

4.5.1. Snow cover depletion curves
Redistribution of snow by wind, interception of snow by vege-

tation, different melt rates for snow on slopes of different aspects
or under vegetation of different densities, topographic influences
on the amount and phase of precipitation and the tracks of storms
lead to variations in snow depths and heterogeneities in snow cov-
er on centimetre to continental scales. Many spatial models that
attempt to predict explicit snow distributions exist (e.g.
[37,64,65,75], Winstral et al. this volume), but single-column mod-
els as discussed here have to represent unresolved heterogeneities
in snow cover using functions of snow depth or mass and surface
characteristics such as roughness length, vegetation height and
variance of subgrid orography. This is crucial for large-scale models
with grid scales that can encompass large variations in snow cover
[77,88], but models often allow for partial snow cover even when
run at point scales as here; the footprints of radiative and turbulent
flux sensors used to obtain evaluation data can cover areas of
snow, vegetation protruding above snow and snow-free ground.

The fractions of areas covered with snow during melt can be re-
lated to probability distributions of pre-melt snow mass [21,31],
but models generally use snow cover depletion curves that relate
fractional cover to average snow depth or mass. Functional forms
in common use are reviewed by Essery and Pomeroy [39] and Lis-
ton [66]; all are empirical or conceptual, so the three options used
here are selected to represent a typical range.

For average snow depth ds, the snow cover fraction in BASE,
BATS, CLM, IAP94 and JULES is given by

fs ¼
ds

ds þ d0
ð51Þ

with differing parameters; CLM has d0 ¼ 10z0g for soil roughness
length z0g ¼ 0:01 m. The same function, with snow mass in place
of depth, is used by ECHAM and ISBA. Yang et al. [111] found that
using the function

fs ¼ tanhðds=d0Þ ð52Þ

in BATS gave better agreement with albedo measurements, and
Roesch [89] adopted the same form for flat, non-forested regions
in ECHAM4. CLASS, HTESSEL and SiB use the linear function

fs ¼minðds=d0;1Þ ð53Þ

In JIM, Eq. (51) is used as option 0, Eq. (52) as option 1 and Eq. (53)
as option 2. The single parameter d0 is set to 0.1 m in all three
ux parameterization options 0 (solid line), 1 (dashed line) and 2 (dotted line). (b)
rface temperature and wind speed measurements in 2005–2006.

models using observations from an alpine site. Adv Water Resour (2012),
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Table 7
Parameter values for snow hydrology parameterizations.

Option Equations Parameters

0 (58) Boone and Etchevers [10]
rmin ¼ 0:03 rmax ¼ 0:1 qr ¼ 200 kg m�3
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options. As can be seen from Fig. 7, a much greater depth of snow is
required for complete cover with option 0 than options 1 or 2.

Models differ in how they use the snow cover fraction. It may be
used to calculate effective parameters such as albedo and rough-
ness length in a single energy balance calculation for combined
snow and snow-free surfaces; this is known to lead to unrealisti-
cally early snowmelt in some situations [40,66]. Instead, JIM calcu-
lates area-average fluxes after separate energy balance calculations
for the snow-covered and snow-free fractions of the surface.

4.5.2. Comparison of snow cover fraction parameterizations
Snow cover depletion curves can be fitted to data from repeated

surveys measuring the depth of snow and the number of snow-free
survey points during melt or can be predicted from measurements
of pre-melt variability [21]. Such measurements are not regularly
made at Col de Porte, so the snow cover fraction parameterizations
are compared with albedo measurements instead. Inverting Eq.
(30) gives

fs ¼
a� a0

as � a0
; ð54Þ

which can be used to estimate fs from albedo measurements if the
albedos of the snow-covered and snow-free surfaces are known.
Fig. 7 shows results obtained using a0 ¼ 0:2 and assuming that
as ¼ 0:65 for aged snow, compared with the three parameterization
options. Option 0 gives the best fit, but the results depend strongly
on the assumed value for as.

4.6. Snow hydrology

Gravitational drainage of liquid water from highly permeable
snow at 0 �C is rapid and often involves preferential flow paths
[2], but capillary tension retains an irreducible water content and
can impede flow between snow layers of differing texture [58].
In addition to the partial water density cw, the liquid water content
of snow can be expressed as a volumetric water content
hw ¼ q�1

w cw or a water saturation Sw ¼ /�1hw, where

/ ¼ 1� ci

qi
ð55Þ

is the snow porosity. In terms of water saturation, the conservation
equation for liquid water is

@U
@z
þ /

@Sw

@t
¼ m

qw
ð56Þ

with evaporation and rainfall boundary conditions. SNTHERM fol-
lows Colbeck [22] in neglecting capillary forces compared with
gravity to take the vertical water velocity as
Fig. 7. Snow cover fraction parameterization options 0 (solid line), 1 (dashed line)
and 2 (dotted line) compared with fractions inferred from albedo measurements in
March and April of 2006 (circles), 2007 (diamonds), 2008 (triangles) and 2009
(crosses).

Please cite this article in press as: Essery R et al. A comparison of 1701 snow
http://dx.doi.org/10.1016/j.advwatres.2012.07.013
U ¼ qwgksat

lw

Sw � Swi

1� Swi

� �3

; ð57Þ

where lw is the viscosity of water, ksat is a saturated permeability
parameterized as a function of snow density and grain size, and
Swi is the irreducible water saturation, described by Albert and Kraj-
eski [1] as ‘‘one of the least well-understood parameters in snow
physics’’. Explicit numerical solutions of Eq. (56) are unstable if
water fluxes are large enough to saturate an initially dry snow layer
within one timestep; SNTHERM uses an adaptive timestep to avoid
this and Albert and Krajeski [1] presented an analytical solution.
COUP and IAP94 adopted the SNTHERM flow parameterization,
but other models almost invariably drain liquid water in excess of
Swi immediately, if they represent snow hydrology at all.

Parameterizing liquid flow velocities in snow greatly compli-
cates a model and only makes a significant difference in runoff
for deep snow or short timescales. JIM therefore uses two options
in which liquid water drains immediately when it exceeds a hold-
ing capacity. Option 0 is used in ISBA-ES, HTESSEL, SAST and VISA,
which follow Anderson [3] in setting a maximum liquid water
mass fraction

cw;max

qs
¼ rmin þ ðrmax � rminÞmax 1� qs

qr
;0

� �
ð58Þ

with parameter values given in Table 7. Option 1 has a fixed irre-
ducible water saturation, giving

cw;max ¼ qw/Swi: ð59Þ

This is used with Swi ¼ 0:033 in CLM and 0.05 in Crocus; JIM uses
the CLM value. As shown in Fig. 8, option 1 gives higher liquid
capacities than option 0 for snow densities less than 500 kg m�3.
Other models impose a maximum volumetric water content (0.03
in Noah-MP and 0.08 in SNOWPACK) that is independent of density.

Many models, including BASE, BATS the original version of
HTESSEL, ISBA-FR, MOSES and SSiB, neglect storage of liquid water
in snow; surface melt water and rainfall are instantly translated to
runoff at the base of the snowpack. This is used as option 2 in JIM
and involves no parameters.

Liquid water is allowed to freeze and release latent heat if it
drains into a snow layer with temperature below 0 �C in JIM con-
figurations that can retain liquid water. Because this gives a strong
1 (59) Oleson et al. [80] Swi ¼ 0:033
2 None

Fig. 8. Liquid water holding capacity of snow, expressed as a mass fraction, from
snow hydrology parameterization options 0 (solid line) and 1 (dashed line).

models using observations from an alpine site. Adv Water Resour (2012),

http://dx.doi.org/10.1016/j.advwatres.2012.07.013


R. Essery et al. / Advances in Water Resources xxx (2012) xxx–xxx 11
coupling between the mass and energy balances, evaluations of the
impacts of using different snow hydrology options are deferred un-
til results are presented from the full model in Section 5.
4.7. Thermal conductivity of snow

Heat flux in snow with a vertical temperature gradient is given
by

G ¼ ks
dTs

dz
; ð60Þ

where ks is an effective thermal conductivity for heat transfer pro-
cesses including conduction through ice and vapour transport in the
pore space. SNOWPACK links thermal conductivity to microstruc-
tural properties of snow, but other models almost invariably param-
eterize conductivity as a quadratic or power function of snow
density; Slater et al. [95] listed the parameterizations used by all
of the models that participated in PILPS2e. The three conductivity
parameterization options in JIM are

ks ¼ ka þ ðakqs þ bkq2
s Þðki � kaÞ ð61Þ

used in IAP94, SAST, SNTHERM and CLM,

ks ¼ ck
qs

qw

� �nk

ð62Þ

from Yen [113] used in Crocus, HTESSEL, ISBA and JULES, and a fixed
conductivity as used in MAPS and MOSES. Fig. 9 shows the three
parameterization options with parameter values given in Table 8.
Option 0 gives consistently higher conductivities than option 1; op-
tion 2 gives the highest conductivities for low density snow and the
lowest conductivities for high density snow.

Measurements of thermal conductivity and regression equa-
tions relating them to snow density have been reviewed by Sturm
et al. [98] and show a great deal of scatter, partly due to differences
in snow structure and partly due to uncertainties in measurement
methods [17]. Results from 3D modelling of conduction through
ice and interstitial air in snow by Calonne et al. [17] closely follow
the regression equation proposed by Yen [113].
Fig. 9. Snow thermal conductivity parameterization options 0 (solid line), 1
(dashed line) and 2 (dotted line).

Table 8
Parameter values for thermal conductivity parameterizations.

Option Equations Parameters

0 (61) Oleson et al. [80]

ak ¼ 7:75� 10�5 m3 kg�1 bk ¼ 1:105� 10�6 m6 kg�2

1 (62) Douville et al. [32]
ck ¼ 2:22 W m�1 k�1 nk ¼ 1:88

2 Constant Cox et al. [23] ks ¼ 0:265 W m�1 k�1
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4.8. Model classification

Each configuration of JIM is identified by a base-3 number

m ¼ ncnsnanenf nhnt ð63Þ

made up of the option numbers 0, 1 or 2 for compaction (nc), fresh
snow density (ns), albedo (na), turbulent exchange (ne), snow cover
fraction (nf ), snow hydrology (nh) and thermal conductivity (nt)
parameterizations. Rather than 37 ¼ 2187, there are 2� 36 þ 35 ¼
1701 possible model configurations because the variable snowfall
density options are not used if snow compaction is neglected
(nc ¼ 2). As a rough measure of complexity, the configurations have
between 9 and 32 parameters. Although it does not give a unique
specification, existing snow models can be classified by the same
system. For example, MOSES as described by Cox et al. [23] is a
composite 2*21122 model, CLASS as described by Verseghy [104]
is a single-layer 1211200 model, CLM as described by Oleson
et al. [80] is a multi-layer 0100010 model and Dutra et al. [34] up-
graded HTESSEL from a composite 1210221 model to a single-layer
0010201 model.
5. Model spread

Before comparing simulations with observations, the spread in
model predictions is discussed. Model spread has already been
shown for snow mass simulations at the SnowMIP sites in Fig. 1,
which includes results from the SnowMIP models and JIM. Exclud-
ing outliers due to models modifying the precipitation driving data,
the ensemble of JIM simulations spans the range of the SnowMIP
models well at all four sites.

JIM simulations of snow mass, snow depth, daily effective albe-
do and daily average surface temperature for the four recent win-
ters at Col de Porte are shown in Figs. 10–13, and ensemble mean
snow mass and spread are shown in Fig. 14. Mid-winter ensemble
spread in snow mass is larger for the warm winters of 2006–2007
and 2007–2008 than the colder winters of 2005–2006 and 2008–
2009, but the simulations have large spreads during spring melt
in all years. The spread increases monotonically to a maximum
in April each year, by which time some configurations are snow-
free and others still have snow masses close to their maxima.
Thereafter, the spread decreases rapidly as the remaining configu-
rations melt the snow. Spread in snow depth is particularly large
for the warm and snowy winter of 2007–2008. Spreads in albedo
and surface temperature are largest at times when some model
configurations have melted all of the snow and others have not.

The contributions of individual parameterizations to the ensem-
ble spread can be measured by calculating differences between
group means for simulations using each parameterization option
and the full ensemble mean. Differences between snow mass
simulations by configurations with different options for snow com-
paction, fresh snow density or thermal conductivity parameteriza-
tions turn out to be small, but choices for albedo, surface flux, snow
cover fraction and snow hydrology parameterizations have larger
impacts; these are shown for 2005–2006 in Fig. 15, and ensemble
simulations for other winters give qualitatively similar behaviours.
For albedo parameterization, option 0 gives the latest melt on aver-
age (shown by a positive difference from the ensemble mean snow
mass) and option 2 the earliest. The two options which suppress
turbulent fluxes in stable conditions give similar results, but the
option of using a constant exchange coefficient gives earlier melt
due to increased sensible heat flux to the snow in spring. Option
0 for snow cover fraction delays melt by reducing the surface area
for transfer of heat from the atmosphere and absorption of radia-
tion for a given volume of snow. The representation of snow hydrol-
ogy has the biggest influence of any of the parameterizations;
models using observations from an alpine site. Adv Water Resour (2012),

http://dx.doi.org/10.1016/j.advwatres.2012.07.013


Fig. 10. Ensemble simulations (grey lines) and observations (circles) of snow mass, snow depth, daily effective albedo and daily average surface temperature at Col de Porte in
2005–2006. Black lines show simulations by configurations giving the 30 lowest values for a cost function of errors in all variables over all winters.

Fig. 11. As Fig. 10, but for 2006–2007.
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configurations which use the highest liquid water capacity retain
much higher snow masses than those which neglect snow
hydrology.

Between-group variances for each set of parameterization op-
tions, divided by total ensemble variances and averaged over each
winter, are given in Table 9. The largest fractions of variance in
snow mass simulations are explained by choices of parameteriza-
tions for exchange coefficients (which determine the amount of
melt due to sensible heat transfer during warm periods in winter)
and liquid water retention (which determines the fate of melt
water). Changes in snow depth between snowfall events is domi-
nated by the compaction of cold snow for most of the winter in
2005–2006 and 2008–2009, but removal of snow by mid-winter
melt events is more important and hence the choice of surface flux
parameterization accounts for more variability in the warmer win-
ters. Variance in albedo simulations is, not surprisingly, sensitive to
choices of albedo parameterization, but choices for snow cover
fraction also influence the area-average albedo for shallow snow,
particularly in the low-snow winter of 2006–2007. Surface temper-
Please cite this article in press as: Essery R et al. A comparison of 1701 snow
http://dx.doi.org/10.1016/j.advwatres.2012.07.013
ature simulations are strongly controlled by the surface flux
parameterization.
6. Model evaluation

Figs. 10–13, used in the last section to show spread in simula-
tions with the 1701 configurations of JIM, also show observations
of snow mass, snow depth, daily effective albedo and daily average
surface temperature. The simulations encompass almost all of the
snow mass and depth observations. Most configurations underesti-
mate the snow mass in 2006–2007, but configurations that fail to
capture melt events in November 2007 and March 2008 retain po-
sitive biases and overestimate snow mass for some time thereafter.
Snow depth is both underestimated by configurations that melt
snow too early and overestimated by configurations that underes-
timate snow density. Some of the albedo measurements are higher
than any of the simulations, but this may partly be due to the dif-
ficulty of keeping radiometers clear during heavy snowfall. The
models using observations from an alpine site. Adv Water Resour (2012),
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Fig. 12. As Fig. 10, but for 2007–2008.

Fig. 13. As Fig. 10, but for 2008–2009.
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largest cold biases in surface temperature simulations (up to 8 �C
for daily averages and over 15 �C for some individual hours) are gi-
ven by configurations using surface flux parameterization option 0
(which minimizes downwards heat transport from the atmo-
sphere) and thermal conductivity parameterization option 1
(which minimizes upwards heat conduction in the snow).

Several metrics are commonly used to evaluate the perfor-
mance of models in comparison with observations. Root mean
square error is probably the most common and, simply referred
to as ‘‘error’’, is used exclusively here (this, of course, is not purely
a measure of model error but also integrates driving and evaluation
data errors). To rank JIM configurations in their ability to simulate
snow mass, errors for each winter were calculated for every config-
uration. Errors were normalized by the highest configuration error
in each winter for comparison and ranked in order of increasing
normalized errors; results are shown in Fig. 16. There is a group
of 33 configurations, all of which use the least sophisticated albe-
do, surface flux and snow hydrology parameterizations, that have
large errors for every winter. At the other extreme, there are sev-
eral configurations that give consistently good performances with
maximum errors roughly a third of those for the worst simulations.
Please cite this article in press as: Essery R et al. A comparison of 1701 snow
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The best 49 configurations ranked in this way all use either the
physical or empirical albedo parameterizations and one of the
two snow hydrology parameterizations that can retain melt water,
and none of them use the Monin–Obukhov surface flux parameter-
ization. These are not, however, the configurations giving the low-
est errors in individual winters; some configurations give low
errors in one winter and high errors in another. The 16 configura-
tions with the greatest inconsistencies between their best and
worst snow mass simulations for the four winters all use options
0 for compaction and hydrology parameterizations and option 2
for albedo parameterization. In each case, these models give high
normalized errors for 2006–2007, low errors for 2007–2008 and
intermediate errors for the other two winters. Using only one win-
ter of observations to select a model structure would run the risk of
choosing a model that will not perform well in other winters.

Fig. 14 showed that the ensemble-mean snow mass compares
well with observations in all winters except 2006–2007, but there
are individual configurations with lower snow mass errors; in fact,
there are 31 configurations which give lower snow mass errors
than the ensemble mean in every winter. Correlations between
series of daily snow mass errors for different configurations vary
models using observations from an alpine site. Adv Water Resour (2012),

http://dx.doi.org/10.1016/j.advwatres.2012.07.013


Fig. 14. Ensemble mean (solid lines) and spread (dashed lines) for snow mass simulations in each winter. Circles show snow mass observations.

Fig. 15. Differences between 2005–2006 ensemble mean snow mass and group means for configurations using snow albedo, surface flux, snow cover fraction and snow
hydrology parameterization options 0 (solid lines), 1 (dashed lines) and 2 (dotted lines).
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greatly, from nearly 0 (e.g. between configurations 2010110 and
2010120 in 2005–2006) to nearly 1 (e.g. between configurations
2010110 and 2010111).

The numbers of times that each parameterization option is used
in the 30 configurations with the lowest errors for each winter are
shown by separate bar charts for snow mass, snow depth, albedo
and surface temperature simulations in Fig. 17. Most of the best
snow mass simulations use one of the hydrology options that can
retain melt water. A constant snow density is not used in any of
the best snow depth or temperature simulations and few of the
best albedo simulations. The option of diagnosing snow albedo
from temperature is not used in any of the best albedo simulations
and few of the best snow mass or depth simulations. A constant ex-
change coefficient is only used in a few of the best snow mass sim-
ulations but the Monin–Obukhov surface flux parameterization is
only used in a few of the best albedo and none of the best temper-
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ature simulations. Compared with the simulations of other vari-
ables, the choice of fresh snow density parameterization is most
important for simulation of snow depth and the choice of snow
thermal conductivity parameterization is most important for sim-
ulation of surface temperature.

No single configuration gives the best simulation for all evalua-
tion variables and all winters. This is a ubiquitous situation in the
multi-objective selection or calibration of hydrological models, and
many studies have addressed the problem of optimization in the
face of non-uniqueness. Without imposing any relative weighting
of objectives, configurations can be rejected if any other configura-
tion can be found with better performance for all objectives; the
set of configurations remaining after rejection is ‘‘Pareto optimal’’.
This approach has been widely used in hydrological modelling
[38,52], but it turns out that the Pareto set of configurations min-
imizing the 16 error measures for simulation of four variables over
models using observations from an alpine site. Adv Water Resour (2012),
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Table 9
Between-group variances divided by total ensemble variances and averaged over each
winter for simulations of snow mass, snow depth, albedo and surface temperature for
differing choices of parameterizations of (from left to right) snow compaction, fresh
snow density, snow albedo, surface fluxes, snow cover fraction, snow hydrology and
thermal conductivity. The largest values in each row are highlighted in bold.

nc ns na ne nf nh nt

Snow mass
2005–2006 0.03 0.01 0.10 0.11 0.03 0.48 0.03
2006–2007 0.01 <0.01 0.11 0.22 0.22 0.25 0.01
2007–2008 <0.01 <0.01 0.05 0.49 0.08 0.26 0.01
2008–2009 0.01 <0.01 0.07 0.16 0.10 0.37 0.03

Snow depth
2005–2006 0.75 0.12 0.06 0.07 0.02 0.10 0.02
2006–2007 0.15 0.07 0.11 0.19 0.20 0.16 0.01
2007–2008 0.34 0.07 0.05 0.39 0.05 0.13 0.01
2008–2009 0.58 0.11 0.05 0.13 0.06 0.11 0.02

Albedo
2005–2006 0.03 0.01 0.47 0.05 0.28 0.01 0.01
2006–2007 0.03 0.01 0.32 0.10 0.32 0.04 0.01
2007–2008 0.01 <0.01 0.51 0.11 0.20 0.01 <0.01
2008–2009 0.02 0.01 0.40 0.10 0.26 0.01 0.01

Surface temperature
2005–2006 0.03 0.01 0.05 0.60 0.15 0.09 0.03
2006–2007 0.02 0.01 0.04 0.63 0.20 0.04 0.01
2007–2008 0.02 0.01 0.04 0.62 0.12 0.09 0.02
2008–2009 0.02 <0.01 0.04 0.69 0.12 0.05 0.02

Fig. 16. Errors in snow mass simulations normalized by the largest error for each
winter and ranked in order of largest normalized error for any winter.
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four winters at Col de Porte is large (1242 members) and does not
constrain the model ensemble much.

An alternative approach for multi-objective optimization, more
akin to methods used for the assimilation of observations in mete-
orological models, is to define a single cost function summing
squared differences between simulations and observations, multi-
plied by factors to weight and non-dimensionalize errors in differ-
ent variables. Known observation error variances or subjective
levels of importance could be used for the weighting factors. Using
observations of four variables (snow mass, snow depth, albedo and
surface temperature) over four winters, the cost function here is
chosen to be

J ¼
X4

i¼1

X4

j¼1

XNij

k¼1

ðvsim
ijk � vobs

ijk Þ
2

16Nijw2
ij

� 1; ð64Þ

where vobs is an observation of a variable, vsim is a simulated value
of the same variable at the same time and the sums are over the
winters (index i), the variables (index j) and the Nij observations
of variable j in winter i (index k). The wij weighting factors are set
to the lowest simulation errors achieved by any configuration for
each variable in each winter to give J ¼ 0 for a configuration with
the lowest errors in all cases, if such a configuration exists. In fact,
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the lowest value achieved is 1.87 for configuration number 320
(0102212). Simulations by configurations giving the 30 lowest val-
ues for the cost function are picked out from the ensembles by black
lines in Figs. 10–13. As shown in Fig. 18, all of these configurations
use the physical snow compaction parameterization, none of them
uses the diagnosed snow albedo or the Monin–Obukhov surface flux
parameterization, and none of them neglects snow hydrology. This
subset does not necessarily include the simulation with the lowest
error for a particular variable and winter, but it can be seen to give a
compromise for reasonable simulations of most variables in most
winters. For 2006–2007, the selected configurations match the
measured snow depth well but underestimate the snow mass from
mid-February onwards. In fact, the manual measurements of snow
mass were also lower than the automatic measurements in that
period. This highlights a difficulty with evaluating snow simulations
against point measurements; snow properties can vary greatly over
short distances, and relative differences are of greater significance
for winters with shallow snow.

Even the more physically-based parameterizations of snow pro-
cesses contain parameters with values that are not well con-
strained by observations or theory, and it is as easy to obtain
poor model performance with poor choices of parameter values
as it is with poor choices of model structure. Calibrating the
parameters in a land surface model for global atmospheric model-
ling applications is not straightforward, but models are often cali-
brated for hydrological applications, and the organizers of
intercomparison projects sometimes make a subset of the evalua-
tion data available to allow a degree of model calibration. A full cal-
ibration of JIM has not been attempted, but configuration number
1700 (2022222), which performed poorly in the original simula-
tions, has been calibrated by random sampling of the five parame-
ters amax, amin, d0, Tc and z0 to minimize the cost function for 2006–
2007. Errors for snow mass, snow depth, albedo and surface tem-
perature are given in Table 10 for the uncalibrated and calibrated
configuration, compared with errors for configuration number
849 (1011110) which performed well without calibration. Errors
for the poorly performing configuration are greatly reduced by cal-
ibration, but the overall performance of a configuration that per-
forms well without calibration is not matched.
7. Conclusions and discussion

The snow model presented here, built entirely from process
parameterizations in common use, generates ensembles that span
the range of results produced by existing models for the SnowMIP
sites and gives similar wide ranges for new simulations at Col de
Porte. Many of the conclusions drawn from comparisons of the
simulations with observations match those from earlier model
intercomparison projects but are demonstrated with much greater
clarity. Failure to predict early and mid-winter melt events accu-
rately can lead to persistent errors, so prediction is more challeng-
ing for warmer winters. There is no ‘‘best’’ model, and increasing
model complexity beyond some minimum requirements is no
guarantee of improved model performance; well-established
empirical parameterizations often give results that are as good as
more physically-based parameterizations. Some models, however,
give results that are consistently amongst the best, and some mod-
els have consistently poor performance. Many models give incon-
sistent results and so cannot be considered to be ‘‘good’’ models,
even if they give good results in some winters. Evaluations of snow
mass, snow depth, albedo and surface temperature simulations,
either separately or combined in a single measure of model perfor-
mance, show that the best results are given by models with prog-
nostic representations of snow albedo and density. For a site such
as Col de Porte which has deep snow but can have surface melting
models using observations from an alpine site. Adv Water Resour (2012),

http://dx.doi.org/10.1016/j.advwatres.2012.07.013


Fig. 17. Numbers of times that parameterization options are used in the 30 configurations with the lowest errors for snow mass, snow depth, albedo and surface temperature
simulations for each of four winters. The bars are, from left to right, for snow compaction, fresh snow density, snow albedo, surface flux, snow cover fraction, snow hydrology
and thermal conductivity parameterizations. Dark grey bars are for option 0, light grey for option 1 and white for option 2.

Fig. 18. As Fig. 17, but for the numbers of times that parameterization options are
used in configurations giving the 30 lowest values for a cost function combining
errors in snow mass, snow depth, albedo and surface temperature simulations for
all four winters.

Table 10
Errors for calibrated and uncalibrated 2006–2007 simulations.

Configuration Snow mass
(kg m�2)

Snow
depth (m)

Albedo Surface
temperature (�C)

1700 uncalibrated 77 0.12 0.13 3.8
1700 calibrated 35 0.07 0.13 2.4
849 uncalibrated 23 0.08 0.08 1.7
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at any time in the winter, it is important to have at least a simple
representation of liquid water storage and refreezing in the snow.
Using a turbulent flux parameterization that decouples the surface
from the atmosphere in strongly stable situations can lead to poor
simulations; better results were obtained by using a constant sur-
face exchange coefficient, but it should be noted that this parame-
ter was previously calibrated for Col de Porte. Choices for
parameterizations of fresh snow density and thermal conductivity
appear to be less critical for simulation of the snow properties eval-
uated here, but they will be important for other applications; it is
important to know if a low density surface layer is preserved after
burial for avalanche risk assessment, for example, and thermal
conductivity is important for the prediction of soil temperatures
under snow.
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As has often been found in simulations of hydrological vari-
ables, the ensemble-mean snow mass compares well with observa-
tions but there are individual ensemble members with consistently
better performances. Calculation of sample statistics from ensem-
ble simulations with equal weighting assumes that the ensemble
members are all independent and equally plausible. The ensemble
used here was constructed to explore the range of behaviours pro-
duced by current snow models rather than with the aim of quanti-
fying uncertainty in predictions made with the best of these
models; some of the parameterizations used were expected to give
poor results based on previous evaluations, and some of the
ensemble members were found to be highly correlated.

Calibration of models by adjustment of parameters to improve
performance metrics for a calibration period, followed by testing
on independent data, is common, particularly in hydrology. Errors
in model structure can be compensated by calibration to some de-
gree, so parameter uncertainty and structural uncertainty are re-
lated. For a complex model with many parameters, there is a
danger of over-fitting the model to the calibration data and hence
reducing its predictive ability. Several model selection criteria have
been developed that use measures of model complexity and per-
formance in evaluation after calibration [24]. All of the parameter
values used in JIM are taken from literature sources, and little at-
tempt has been made to calibrate them so far. Calibration of such
a large ensemble will be an interesting computational challenge,
even using efficient optimization algorithms (e.g. [102,106]); more
than thirty thousand parameter values would have to be selected if
every configuration were to be calibrated independently. Calibra-
tion of a subset of parameters or a subset of configurations selected
to span the uncalibrated ensemble could be attempted first.

The relative importance of different snow process parameter-
izations will vary with climate, so JIM will be tested at other sites.
The use of driving data from well-instrumented sites such as Col de
Porte, here and in many other studies, allows highly controlled
evaluations of model performance but does not reflect how models
are actually used in practical applications. Models often have to be
run on the large scales of catchments or climate model grid cells,
and they are often coupled to atmospheric models that provide
biased driving data and respond to errors in predicted surface
models using observations from an alpine site. Adv Water Resour (2012),

http://dx.doi.org/10.1016/j.advwatres.2012.07.013


R. Essery et al. / Advances in Water Resources xxx (2012) xxx–xxx 17
fluxes, generating feedbacks. Evaluations of snow models in the
applications for which they are intended, such as Dutra et al.
[35], are to be encouraged.
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