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Objective

● Explain the basic concepts of CO2 (regional) atmospheric 
inversions 

• Characterize the need for regional inversions

• Give an overview of the initial applications and challenges 
of regional inversions 
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Outline

● The principles of CO2 atmospheric inversions 

• Global inversions of natural fluxes 
➔ the need for regional inversions

• The issues raised or amplified by regional inversions 

• Regional inversion of natural fluxes 

• Inversion of anthropogenic fluxes at urban scale

• Conclusion: challenges for the regional inversion 
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I- The principles of CO2 atmospheric 
inversions
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The basic concept: fluxes and atmospheric gradients

• Gradients in atmospheric concentrations bear the signature of CO2 fluxes
➔ Top-down approach: going back to the fluxes using proxies of the 
atmospheric transport 

The increase of CO2 at 
Mauna Loa due to 

global anthropogenic 
emissions

The identification of fluxes 
using spatial gradients in the 

concentrations 
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Can the atmospheric transport be inverted ?

• The CO2 concentration integrates the fluxes along the atmospheric trajectory 
➔ The atmospheric transport cannot be inverted to separate local flux 
contributions to a gradient in concentrations
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Can the atmospheric transport be inverted ?

● The relationship between the flux / obs could be inverted if nb
obs

=nb
unknowns
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Can the atmospheric transport be inverted ?

● However: unkown errors in the atmospheric modeling and in the finite 
representation of the fluxes so nb

unknowns
 > nb

obs

➔ Atmospheric inversions are “generalized (statistical) inversions”
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The need for “bottom-up” estimates of the fluxes  

• The top-down retrieval of the fluxes can bear large uncertainties
➔ need to be combined with independent & valuable information
 

● Large gaps in the atmospheric observation coverage
➔ need to constrain the estimates using other data for many regions

➢ In general, the atmospheric inversion is not a purely top-down estimation  

A typical in situ observation 
network used at global scale 

Bottom-up estimates of natural (land and 
ocean) and anthropogenic fluxes 

Vegetation 
models

Ocean climatologies

Anthropogenic 
emission inventories
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The correction of the bottom-up “prior” estimate

Prior fluxes & uncertainties

Optimized fluxes & uncertainties

Atmospheric transport 
model with model 
transport errors

Atmospheric CO2 measurements 
with measurement errors

misfits

FORWARD

Corrections of the fluxes which 
decrease the misfits

BACKWARD
(sensitivities to the 

fluxes based on 
adjoint or ensemble 

simulations)

INVERSION: optimization of 
the corrections accounting 
for the uncertainties/errors
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The mathematical framework of data assimilation (1)
S

p
ac

es observation space: CO2 at the time/location of the measurements = y

control parameters (e.g. fluxes at a specific space and time resolution) = f

Observation operator H: conversion of the control parameters into transport 
model input parameters, atmospheric transport model and extraction of the 
transport model output concentrations at observation time/location  

offset yfixed: component of CO2 not controlled by the control vector (e.g. 
background concentration when the control vector = flux parameters only) 
➔ projection of s into y: y=Hf + yfixed 

measurements = yo

prior estimate of the control variables = fb  

prior misfits = yo – Hfb - yfixed

O
p

e
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The mathematical framework of data assimilation (2)

Statistical representation of the errors/uncertainties

Definition of the “true” control parameters and concentrations: ftrue and ytrue

 

Information from the prior and from the data: p(ftrue | fb) and p(ftrue | yo)

Uncertainties in the prior information: p(fb - ftrue | fb)

Observation error: p(yo - Hftrue – yfixed  | yo)
➔ includes model error: Hftrue + yfixed - ytrue + measurement error: yo - ytrue

Unbiased / Gaussian assumptions: p(fb - ftrue | fb)=N(0,B) 

           and p(yo - Hftrue – yfixed  | yo)=N(0,R)

isotropic correlations in space between 
a German location and other points 

A typical spatial 
structure 

of the covariance 
matrix B for 

uncertainties in the 
gridded estimates 
of European fluxes

standard deviations for a 
given time (diagonal of B)
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The mathematical framework of data assimilation (3)

Bayesian update: the equations for the inversion problem

Bayesian equation: p(ftrue | fb, yo) = p(yo | fb, ftrue) p(ftrue | fb) / p(yo | fb)
 

           = α
1 
p(yo | ftrue) p(ftrue | fb) 

Unbiased / Gaussian assumption:
 

p(yo | ftrue) =  α
2 
exp(-1/2 [yo - Hftrue – yfixed]TR-1[yo - Hftrue – yfixed] )

p(ftrue | fb) =  α
3 
exp(-1/2 [fb - ftrue]TB-1[fb – ftrue] )

➔ p(ftrue | fb, yo) = α
4 
exp(-1/2 J(ftrue) )

where J(f)=[fb - f]TB-1[fb – f] + [yo - Hf – yfixed]TR-1[yo - Hf – yfixed]
➔ p(ftrue | fb, yo) = N(fa,A)       where   fa = fb + AHTR-1 (yo – Hfb – yfixed) 

                              fa minimizes J (least square min)

                             A=(B-1 + HTR-1H)-1 

Optimal estimate: fa

Uncertainty in the optimal estimate: A fb
fa

yoB R
A
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Practical implementation and interpretation (1)

Optimal estimate: fa = fb + BHT(HBHT+R)-1 (yo – Hfb – yfixed) 

Meaning of adjoint HT: if g(f)=G(Hf)=G(y) then 
f
g  = HT

y
G  

HT  sensitivity of functions of the conc. to the control param (e.g. “obs footprints”)
➔ HBHT+R and in particular R weight the information from the data 
➔ B rescales (STD) / smoothes & extrapolates (correlations) the patterns of the 
misfit footprints to get the corrections to the fluxes

B and R need to be defined a priori: critical configuration of the inversion

Typical footprints of atmospheric 
stations in South America

Typical patterns of optimal correction 
when using B with isotropic correlations



SOFIE Spring School 2013– Peking University, April 8­11 2013 15/43

Practical implementation and interpretation (2)

Problem: fa = fb + AHTR-1 (yo – Hfb – yfixed) and A=(B-1 + HTR-1H)-1                                         [1]
 

            or fa = fb + K (yo – Hfb – yfixed) and A=(I-KH)B where K=BHT(HBHT+R)-1    [2]

            or fa = argmin J: f  [fb-f]TB-1[fb–f]+[yo-Hf–yfixed]TR-1[yo-Hf–yfixed]                 [3]

• H can be non-linear
➔ Linearization (derivation or finite-differences)   

• H and sometimes HT available as operators f  Hf=y and 
y
G  HT

y
G = 

f
g

➔ not as matrices

• Different implementations:  analytical, ensemble and variational methods, 
solving for different sets of equations [1,2 or 3] 
  

➔ Different constraints on the size of f or y, or on the structure of B and R
 

➔ Most of the methods need f or y to be small (except for variational inversion) 
and R to be easily invertible
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Some insights on the set-up of inversions

● B and R need to be defined a priori: critical configuration of the inversion
 

In particular, when R is too small compared to actual model/measurement 
errors, the inversion will mistakenly correct the fluxes to compensate for 
these errors 

The configuration of the control vector should be driven by the ability to 
define the uncertainty on its prior estimate (i.e. B)
● Actual errors are hardly unbiased and Gaussian

and

• Lack of knowledge for the characterization of B and R
➔ difficulties to find “the right” configuration for B and R  
➔ Often better to select the data to be assimilated when R likely small only 
rather than attempt to account for large errors in R
 

➔ Usually, definition of relatively long/time correl length in B to smooth/ extrapolate 
the information from coarse atmospheric networks  
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II- Global inversions of natural fluxes 
and the need for regional inversions
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The need for identifying the main Carbon sinks and sources

Global estimates: 
anthropogenic 
emissions and 

natural 
sinks/sources for 

2000-2009

● Global anthropogenic emissions and atmospheric growth relatively well known
● The split between ocean and land natural sinks more uncertain
● Need for anticipating the evolution of the natural sinks/sources with climate change

➔ Requires a knowledge of the spatial/temporal distribution of the 
sinks/sources and ultimately of the underlying processes 

1.1 Pg C y-1

7.7 Pg C y-1

4.1 Pg C y-1

2.4 Pg C y-1

2.3 Pg C y-1

47%

27%

26%
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Traditional configuration of the global inversions 

The regions of interest and 
the in situ networks used by 
the main global inversions in 

2002 and 2013 

● Attempt to separate the global natural sink between (1) the ocean and land  
(2) Latitudinal bands, mainly: Tropics, Northern/Southern Hemispheres
(3) the different continents & oceans
● Use of in situ weekly and continuous (hourly) measurements

➔ inversions based on satellite data exist but are still marginal
● Use of atmospheric transport models at 2-3° horizontal resolution
➔ Despite its increase, the in situ network still too sparse (e.g. South America)
➔ Regions of interest too large/heterogeneous to characterize underlying processes

Peylin et al., 2013, ACPDGurney et al., 2002, Nature
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The uncertainties in the results

● Actual uncertainties 
= spread + potential bias of the ensemble of inversions
> spread of the ensemble of inversions  
> theoretical uncertainties estimated by inversions (due to errors in these estimates) 
➔ annual to multi-annual budgets from the inversions bear large uncertainties

Synthesis of 
estimates of the 

natural fluxes from 
global inversions

Peylin et al., 2013, ACPD
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Comparison to other types of estimates

Estimates of the European natural carbon 
sink (Tg C y-1) between 2001-2005

● Other methods (upscaling of eddy-covariance flux data, biomass & harvest 
inventories etc.) seem to provide more robust estimates of (multi-)annual 
budgets

● Critical role of ecosystem model underlying inversion results

Luyssaert et al., 2012, BGD
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Sources of uncertainties in results from global inversions (1)

Uncertainties in the anthropogenic emissions

● Global inversions generally assume that their prior 
estimates of anthropogenic emissions are perfect
➔ however, significant uncertainties in the 
anthropogenic inventories at global/annual scale 
(5-10%) to 2-3° / hourly resolution 
➔ Inversions mistakenly report the errors from 
anthropogenic fluxes into natural fluxes

Differences between the estimates of  
annual flux in Europe from two 

different inventories (EDGAR and IER) 
as a function of the spatial resolution

Ciais et al., 2010, GCB
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Atmospheric transport errors

PBL height based on vertical profiles 
from meteorological models and 

radiosonde data (period: 1983-2010)

Spread of CO2 simulations at the 
Hungarian tall tower between 

different atmospheric transport model

● Global inversion generally ignore the error correlations in time 
➔ Comparisons of the meteo data used to force the model and atmospheric 
measurements reveal sources of biases
➔ Large potential impact of the poor configuration of model error (inversions apply 
spurious corrections to the fluxes to compensate for the model errors)

Sources of uncertainties in results from global inversions (2)

Peylin et al., 2011, ACP TRANSCOM PBL inter-comparison



SOFIE Spring School 2013– Peking University, April 8­11 2013 24/43

Representativeness errors (from transport model)

● The topography, coastline, local atmospheric and flux conditions nearby ground 
based measurement stations are poorly represented in low resolution models
➔ data not representative of the mean conc in the corresponding model grid cell
➔ by essence, this error can easily be biased or highly auto-correlated in time, and is 
poorly accounted for by inversions
● Similar issue with the representation of fluxes in heterogeneous / coastal regions

LMDZ grid 3.25° x 2.75° 
grid cells, the dominant 
ecosystem within these 

grid cells and 
atmospheric 

measurement stations in 
Amazonia

Sources of uncertainties in results from global inversions (3)
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Aggregation / flux representativeness error

Sources of uncertainties in results from global inversions (4)
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➔ Caused by a too coarse resolution of the fluxes (a too low dimensional control 
vector) for the inversion or by the use of too long time/space correlations in B 

Sources of uncertainties in results from global inversions (4)

Some patterns of 
aggregation errors ? 

(natural 4-year mean fluxes 
based on the inversion of 

the fluxes for large regions)

Source: carboscope inter-comparison

Aggregation / flux representativeness error
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How to decrease these source of uncertainties ?

● The increase in control/atmospheric space resolution naturally decreases the 
representation/aggregation errors and help solve for anthropogenic emissions 

● The set-up of atmospheric/inversion regional parameters adapted to regional 
atmospheric transport / flux or the use of true mesoscale / high resolution 
transport model should help decrease the model error

Mean diurnal cycle of CO2 at Ochsenkopf based 
on data and simulations using low and high 

spatial resolution transport or fluxes  

The drivers of monthly 
variability in CO2 at sites in 

USA and in Amazonia

Parazoo et al. 2008, ACP

Measurements
Low spatial res transport
High spatial res transport
High spatial res transport

Pillai et al. 2011, ACP
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Need for resolving high resolution patterns in the fluxes

The strong heterogeneity in the European 
ecosystem (photosynthetic activity map)

High resolution estimate of the 
emissions of CO2 in Europe

● to identify underlying processes by separating inhomogeneous sinks/sources
● to exploit the knowledge about the distribution of urban areas and ecosystems
● to solve anthropogenic emissions at scales relevant for policy makers 
(verification of the emissions at national/city/site scales; identification of local drivers)

➔ Major interest for cities (~70% of the total CO2 emissions)

Source: ODIAC
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Development of regional observation networks

ICOS European network

CO2-MEGAPARIS & ICOS 
network in the Paris area

● GHG atmospheric in situ networks at 
continental to urban scales
➔ Several ICOS stations would be binned 
together in global inversion configurations  
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Use of small domains for high resolution configurations

Multiple level nesting configuration 

● Computational resources prevent from operating global models at high resolution
● Need for local configuration of the atmospheric transport and inversion 
➔ regional configurations with regional/local domains, regional mesoscale / high 
resolution atmospheric transport models and open boundary conditions 
(nesting in larger configurations)   

Pillai et al. 2011, ACP
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III- Issues raised or amplified by 
regional inversions
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Difficulties in modeling the regional transport

● Better fit to the observed variability but biases in PBLH still high
➔ Assimilation of hourly data (vs daily/monthly at global scale) but selection of 
data e.g. at low altitude stations during the afternoon only (as for global inv)

CO2 at Marmande tower

Obs
High res models

Lauvaux et al. 2008, ACP
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More unkowns for the inversion problem ?

Land cover and measurement stations in les Landes

● The ratio nb obs / nb model grid cell generally lower than for global applications
● Need to solve for different flux components (per ecosystem, emission sectors...)
● Complex B (higher resolution  shorter correl length & anisotropy, inhomogeneity)

Definition of a control 
vector based on dominant 

ecosystems in Europe 

Lauvaux et al. 2008, ACP Peters et al. 2009, GCB
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Errors from the boundary conditions

● Boundary conditions are critical driver of the 
concentrations in the regional configurations but 
are based on CO2 from global inversions with 
flux/transport/representation errors  errors in the 
regional flux inversion
➢ Global config with zooms to avoid boundaries 
(problem with the definition of local meteo or 
inversion parameters)
➢ Attempts at adjusting the boundary conditions 
during the inversions (problematic definition of f

OBC
 

and B
OBC

) or using “background” measurements 

Zooms with LMDZ

Corrections from 
European inversions with 
different control vectors:  

natural fluxes 

natural fluxes+boundary conditions 

Fig. by L. Li
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IV- Regional inversion of natural fluxes
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Various scales: continental / national / regional

Broquet et al. 2011 JGR /
2013 ACPD: European Net 

Ecosystem Exchange 
(NEE) at 0.5°/6-hour res  

Meesters et al. 2012, JGR: 
Resp and Growth Primary 
Production (GPP) in the 

Netherlands at 
10km/seasonal res   

Lauvaux et al. 2012a ACP, 
2012b Tellus B: daytime 
and nighttime NEE in the 

Cornbelt (Iowa & 
neighbour states) at 
20km/weekly res + 

boundary conditions

Gockede et al. 2010, JGR: 
temporal mean GPP, RH 
and RA in Oregon for 120 
different surface types   
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Evaluation of results using eddy covariance data

● Scale of representativeness for flux eddy covariance measurements ~ 1ha / 1km
➔ Increase in flux resolution by inversions allow for comparisons

Eddy covariance site 

Comparison of daytime NEE from 
inversion at ~8km resolution and eddy 

covariance data in Les Landes for 3 
different 5-day observing periods  

Lauvaux et al. 2009, GRL
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Evaluation of results/uncertainties at European scale

Inversion of NEE at European scale for 2002-2007: 30-day avg NEE (gCm-2day-1) 
at eddy cov measurement sites. Shadded areas=+/- std of model uncert.

CE-IP data     ORCHIDEE (correl=0.87)     Inv NEE (correl=0.96)

Theoretical uncertainty reduction = 53% vs 38% reduction in STD for misfits to eddy cov

Broquet et al. 2013, ACPD
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Robustness of the estimate of the variability in Europe NEE

Comparison between the amplitude of the natural 
variability and the uncertainties from the inversion

● High confidence in the 
estimate of uncertainties in 
NEE at European/monthly 
scale
➔ The seasonal cycle from 

inversion is reliable
➔ Difficulties to monitor the 

inter-annual variability 
(< posterior uncertainties)

Mean seasonal cycle of over Europe:
 30-day avg NEE (in gCm-2day-1) 

Shadded areas=+/- std of model uncertainty.
Dotted lines=+/- std of the inter-annual variability

Broquet et al. 2013, ACPD
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Influence of the prior estimate in the corn belt

2/12

CO2 fluxes accumulated from June to 
December in TgC.degree−2 

Prior fluxes Posterior fluxes

P
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o
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Lauvaux et al. 2012, ACP
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Sensitivity to the control vector in the Netherlands

Two week fluxes based on synthetic 
data inversion experiments  

RMS between flux inversion (βRG0.0 
and βRGpixel) using real data and 

direct flux measurements from aircraft 

Meesters et al. 2012, JGR Tolk et al. 2011, ACP

The different control vectors and 
parameters for the associated B
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V- Conclusion  
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Challenges for the regional inversion

● Need for demonstrating the capacity of the method even though observation 
networks seem to be still inadequate and difficult to sustain

➔ The “proof of concept” approach (e.g. get the flux right for x% of the 
time / space)
➔ Natural/industrial site scale inversions

● Ability to merge different sources of information and to characterize the 
processes (adjustment of parameters for process models at regional scale)

● Need for breakthrough improvement in the atmospheric transport modeling

● Exploitation of satellite data   
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Supplementary material  
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Satellite data: potential and challenges

● Satellite measurement of CO2 vertically integrated column (XCO2): nearly 
daily/weekly global global coverage at 102km to (future) 2km resolution

➔ decrease the role for prior information
➔ decrease the weight of representation error due to spatial resolution

● However: 
➔ small signal in XCO2 from the fluxes; problem of vertical extrapolation
➔ large measurement errors with large biases  

Map of Aug 2012 mean XCO2 from GOSAT 
in 2.5°x2.5° mesh

Simulation of the typical measurement 
bias in the misfits vs Microcarb data due to 

aerosols in January
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Inversion of anthropogenic fluxes at 
urban scale
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Bottom-up inventories at urban scale

● Sectoral/spatial/temporal disaggregation of national total combustion (oil, gas, 
coal, cement production...) 
● Locally & per sector: CO2 emission = activity data x emission factors
➢ Large uncertainties at high resolution, good estimates of total (annual) fluxes 

Airparif inventory of the emissions in the Paris area: map of mean 
fluxes and typical hourly profiles for the main sectors of emission.
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Objectives for the atmospheric inversions ?

Airparif inventory of the emissions in the Paris area: map of mean 
fluxes and typical hourly profiles for the main sectors of emission.

● Verification vs improvement of inventories 
➔ different objectives & tasks
 

● Need for highly accurate total (annual) flux for cities
● Need for good sectoral estimates (improve emission factors for climate policies)
● Need for solving high temporal / spatial resolution ? (emission factors function of 
space ? Identification of sites through urban scale inversions ?) feasibility ? 
➔ How to separate natural vs anthrop fluxes ? Between sectors ?
➔ How to constrain large scales when the correl in time / space are low, flux bear 
very high heterogeneity / high temporal & spatial variability ?
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Adequacy of exploratory observation networks ? (1)

CO2-MEGAPARIS & ICOS 
network in the Paris area

CO2-Megacity (Los Angeles)

Aircraft 
measurements for 

Indianapolis
Continuous stations (5 in 
Salt Lake city, 3-12 in 
indianapolis, 5-6 in Paris, 
4 in London...), mobile & 
aircraft campaigns
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Adequacy of exploratory observation networks ? (2)

Some conclusions from Mc Kain et al. 2012, PNAS:
● Models cannot explicitly represent small-scale processes

➔ In situ stations should be used to detect regional trends only
● Increase nb of stations: useless for detecting changes in the emissions at 
monthly scale
● Remote sensing: “the best route for accurate verification of emission inventories”

Hourly observed and modeled CO2 concentrations for two weeks in 
October 2006 at a site downtown Salt Lake City (Mc Kain et al 2012, PNAS)



SOFIE Spring School 2013– Peking University, April 8­11 2013 51/43

Study of the representativeness in a urban environment

Use of high resolution modeling to 
configure the urban meteorology and 

assess the representativeness of 
measurements station in the 

Carbocount-city project (for the Paris 
area; image from ARIA) 

Measured vs modeled 
concentrations during 

the afternoon at 
Teddington (London) 

Measurements
NEE-CO2
FF-CO2

OBC-CO2
Total CO2

● Local vs remote signal ? 
● Contribution of boundaries, natural 
and anthrop fluxes ?
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Use of co-emitted species

● Strong correlations between the emissions of CO2 and CO/NOx/SO2... for a 
given sector

➔ Use of the co-emitted species to help separate natural & sectoral emissions  

Use of CO &NOx inventories, 
CO/CO2 and  NOx/CO2 

atmospheric slopes to derive 
estimates of CO2 fluxes from 

Houston (Brioude et al 2012, JGR)
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Use of carbon isotopes

Slide by F. Vogel

● The depletion in 14CO
2
 gives insights about CO

2
 from anthropogenic emissions 
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Potential of satellite data

Enhancement of GOSAT concentrations over Los 
Angeles (Kort et al 2012, GRL)

● The signature of plumes 
from large cities can be seen 
using high horizontal 
resolution space-borne data 
➔ Problem of 
representativeness in time 
(few hours) and of the 
requirements of 
accuracy/precision  

Estimate of the 
uncertainty 

reduction on 7h00-
11h00 mean 

emissions from 
Paris due to the 

assimilation of data 
from obs of XCO2 

at 4km res

The plume 
from Paris 

seen in XCO2 
at 2km 

resolution
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