Evaluating the Third Indirect Effect of Aerosols on Climate

The second visio-conference September 15, 2011

Aerosols' direct and indirect effects

Topics

- Aerosol \rightarrow temperature
- Aerosol \rightarrow SWdn
- Aerosol \rightarrow diffuse light
- Aerosol \rightarrow N-deposition

- \rightarrow C sink
- \rightarrow C sink
- \rightarrow C sink
- \rightarrow C sink

Back-of-the-envelop calculations

- Based on Koch 2011 (J Climate), the cooling effects of sulfate aerosols are 0.2-0.5K over North America and Eurasia, and 0.1-0.2K elsewhere.
- Assuming -0.2K everywhere, the net gain in carbon storage due to the cooling effect of sulfate is 15.8GtC or 57.9GtCO₂, equivalent to 7.4ppm (1ppmCO₂= 7.81GtCO₂) decrease in terms of ambient CO₂ concentration
- The corresponding RF is approximately -0.12 W m⁻² (calculated as 7.4ppm/100ppm*1.66Wm⁻², 1750-2005), ranging from -0.06 to -0.3 W m⁻² (if the uncertainties of ∆ Tc range from -0.1K to -0.5K).

Calculation based on CMIP5 results

Expt 3.1 Pre-Industrial Control	Impose non-evolving, pre-industrial conditions, which may include: Prescribed atmospheric concentrations of • all well-mixed gases (including CO2) • some short-lived (reactive) species Prescribed non-evolving emissions or concentrations of • natural aerosols or their precursors • some short-lived (reactive) species. Unperturbed land use.
Expt 6.2a PI (prescribed SST)	Baseline climatology
Expt 6.4a: PI + 2000 anthro. Aerosols	An atmosphere-only run driven by prescribed SST and sea ice consistent with the climatology of the
Expt 6.4b: PI + 2000 anthro. sulfate	pre-industrial control run (expt. 3.1), but with aerosols consistent with conditions in year 2000 of the historical run

Norwegian Climate Centre (NCC), NorESM1-M

Canadian Centre for Climate Modeling, CanESM2

Commonwealth Scientific and Industrial Research Organization/ Queensland Climate Change Centre of Excellence (CSIRO-QCCCE), CSIRO-Mk3.6

N-deposition on C sink

- Which aerosol species are important for C-sink? (ammonium, nitrate, and ...?).
- What types of deposition should we use (i.e., dry deposition or wet deposition)?
- How to conduct the calculation (ORCHIDEE)?
- Any suggestions ...