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Mapping CO2 sources and sinks 
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Air sample measurements 

 Measurements to monitor CO2 at the Earth’s surface are usually 
accurate to within 1 ‰ for multi-year means. 

 This specification penalises their spread over the globe. 
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CO2 remote sensing from space 

 Measuring CO2 indirectly from its radiative effect. 

 CO2 signal is in competition with that of clouds, aerosols, etc. 

 Massive volume of measurements. 

 No sounding in the presence of thick clouds or in the absence 
of source. 
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Stringent accuracy requirements for 

CO2 column retrievals 

Needs for CO2 flux inversion, given the amplitude of the expected signal: 

- Random errors < 2%. 

- Systematic errors < 1.25 ‰ (3 ‰ pour CH4). 

Very ambitious for satellite measurements. 
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Growing investment from the space 
agencies 

 Partial column products from non-CO2-dedicated missions: 

 TOVS, AIRS, IASI, TES. 

 

 Total column products from CO2-dedicated missions: 

 Japan: 

 GOSAT (JAXA/NIES/MoE), launched in 2009.  

 GOSAT-2 (JAXA/NIES/MoE), planned for 2018.  

 USA: 

 OCO (NASA), failed launch in 2009.  

 OCO-2 (NASA), launched in 2014.  

 China: 

 TanSat (CAS, MOST, CMA) planned for 2015. 

 Europe: 

 Sciamachy (ESA), 2002-2012. 

 More satellites are under study (US ASCENDS, France Microcarb, 
etc.). 

 

 

Chédin et al., JGR, 
2003. 
First satellite CO2 
retrievals (upper-trop. 
and Tropics) 



 7 

CO2 remote sensing 

 The estimation problem is under-constrained: we complete the 
measurements with a priori information. The fusion of 
probabilistic information is rigorously expressed by Bayes’ 
theorem. 
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CO2 Profiles: OCO-2 
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Atmospheric inversions 

 The estimation problem is under-constrained: we complete the 
measurements with a priori information. The fusion of 
probabilistic information is rigorously expressed by Bayes’ 
theorem. 
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Processing chain of the satellite 

measurements 

 Level 0 product: Raw measurements 

 

 L1: Calibrated measurements expressed in terms of radiances 

 

 L2: Profiles or columns of CO2 

 

 L4: Maps of sources and sinks of CO2 

We expect the end product to significantly increase our knowledge 
about CO2 surface fluxes. 

 

 

 

 

 

 

 

 

Theoretical uncertainty 
reduction for the GOSAT 
satellite  
(0=neutral; 1=perfect) 
 
Chevallier et al. (GRL, 2009) 
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Spread and biased GOSAT CO2 

global inversions (1/2) 

 2 GOSAT products or surface air sample measurements (2010), 
2 inversion systems, 2 versions of 1 of the transport models.  

source 

sink 

Global ocean mondial: sink between 0 and 2 GtC. 
Europe: sink between 1 and 2 GtC ? 
North Africa: source between 1 and 2 GtC ? 
Chevallier et al. (GRL, 2014) 
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Spread and biased GOSAT CO2 

global inversions (2/2) 

 Aircraft measurement campaigns in the Pacific do not support 
the CO2 meridional gradient inferred by the GOSAT retrievals.  

ΔCO2 denotes the difference  
in CO2 between 30◦N–60◦N  
and 20◦S–20◦N. 

Mean and range of 
meridional gradients 
that are supported by 

HIPPO aircraft 
measurements 

between 900 hPa and 
300 hPa collected 

during HIPPO 2 (Oct. 
2009) and HIPPO 3 

(Mar. 2010). 

Comparison between  
simulated and 
measured meridional 
gradients of CO2, 
and their relationship 
with inversion-
derived carbon 
fluxes.  
 
Houweling et al.  
(JGR, 2015) 



 12 

Processing chain 

L0 (raw measurements) 

 

L1 (calibrated radiances) 

 

L2 (CO2 retrievals) 

 

L4 (CO2 fluxes) 

 The steps are spread between various institutes. 

 Is the resulting chain consistent from end to end? 

 Only mitigation measure so far: averaging kernels KH (linear 
representation of the weighting of information content of the retrieval). 

 xsim  = xb + KH(xmodel – xb) 

 

 

 

 

 

 

 

x: retrieval vector (mostly CO2 profile) 
xb: retrieval prior of x 
xmodel: direct model output 
xsim: model-equivalent of x 
K: retrieval gain matrix 
H: linear retrieval observation 
operator (mostly radiation model) 
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Processing chain 

 From satellite radiances to CO2 retrievals (using a radiation model H). 

 Optimal state xa = xb + K(y – Hxb)   (1) 

 K = BHT(HBHT + R)-1 

 Uncertainty A = (I – KH) B 

 

 

 From CO2 retrievals to estimated fluxes (using a transport model H 
and – indicated with primes – the averaging kernel KH). 

 Optimal state xa  = xb + K’(y’ – H’xb)   (2) 

= xb + K’(Ky – KHHxb )  (3) 

= xb + K’K(y – HHxb)  (4) 

 K’ = BH’T(H’BH’T + R)-1 , with H’ = KHH 

 Uncertainty A = (I – K’H’) B 

 

 

 

y: observation vector  
B: prior error covariance matrix 
R: observation error covariance 
matrix 
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Gain matrices K 

 From CO2 retrievals to estimated fluxes. 

 

 K’K = BH’T(H’BH’T + R)-1 BHT(HBHT + R)-1 

 We want this product to be a gain matrix itself so that: 

 K’K = BHTHT (HHBHTHT + R)-1  

 If H ≠ I, we need: 

1. HBHT = HHBHTHT      -> consistent prior error 
     statistics in radiance space 

2. HTKT (KHBHTKT + R)-1 B = I  -> KH ≈ I 

 

Chevallier (ACPD, 2015) 
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Consistent prior error statistics? 
Correlations 

HBHT in the LSCE 
inversion system 
 
Both axes are 
vertical  
pressures (hPa) 

B in the ACOS 
retrievals 
 
Both axes are 
vertical 
pressures (hPa) 
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Consistent prior error statistics? 
Standard deviations 

HBHT in the LSCE 
inversion system  
σcol ≈ 1-4 ppm 
 
The vertical axis 
shows  
pressures (hPa) 

B in the ACOS 
retrievals 
σ col = 12 ppm 
 
The vertical axis 
shows  
pressures (hPa) 
 
O’Dell et al. (2012) 
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Changing B 

 Regenerating the retrievals with a different B (collab. with C. 
O’Dell, CSU). 

 

 ACOS b3.5, high-gain, medium-gain, nadir, glint. 

 New B (hereafter B’) from a frozen climatology of prior error 
statistics (latitude, month, geotype). 

 

 Ad hoc bias-correction based on MACCv13.1 and using the same 
parametric formula than ACOS-GOSAT (2×5+4 parameters). 

 

 4 inversions compared over 4 years (2010-2013): 
 MACCv14.2 (surface). 

 ACOSHM: Standard b3.5, H-gain and M-gain. 

 ACOST
HM: b3.5 with B’, H-gain and M-gain. 

 ACOST
H: b3.5 with B’, H-gain only. 
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Inverted annual regional budgets 
over land with 1 σ 
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Conclusions 

 Satellite-based atmospheric inversions use small XCO2 signals, that 
need to be carefully extracted and characterized. 

 Renews the problem of remotely sensing atmospheric 
composition. 

 Need of better statistical consistency from radiances to fluxes. 

 Official retrievals do not properly account for prior information. 

 Averaging kernels do not peak at the right altitude. 

 Noticeable impact on subcontinental annual budgets (not just 
random noise). 

 Solutions to tailor existing retrievals to each individual inversion 
scheme should be offered (through linear algebra) in the same 
way as averaging kernels are systematically provided. 

 Other smaller issues in the retrievals remain to be solved: 

 Underestimation of atmospheric growth rate, 

 Inclusion of medium-gain data, 

 High latitudes. 
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Back-up slides 
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XCO2 4-yr mean GOSAT and MACC 

surface inversion 

ACOS-GOSAT 
b3.4 

MACC  
v13.1 

Chevallier (ACPD, 2015) 
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XCO2 4-yr mean GOSAT and MACC 

surface inversion 

ACOS-GOSAT 
minus MACC  

# of data 

Chevallier (ACPD, 2015) 
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Misfits vs. retrieval increment – H gain 

(land) 

o Misfit bias    
o b: retrieval prior 
o a: raw retrieval 
o a,c: bias-corrected retrieval  
o MACC = no AK  MACC vs. TCCON ~ 0±0.9 ppm 

 

Variability  
of XCO2

b:  
σ = 3 ppm 

 
Random 
Bias 

Chevallier (ACPD, 2015) 

Size of the retrieval 
increment 
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Misfits vs. retrieval increment – H gain 

(land) 

o Misfit bias   and std. 
o b: retrieval prior 
o a,r: revised retrieval (AK/2), without any bias-correction 
o Unchanged abscissa 
o MACC = no AK  MACC vs. TCCON ~ 0±0.9 ppm 

 
 

Random  
Bias  

Chevallier (ACPD, 2015) 


