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Mapping CO2 sources and sinks 
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Air sample measurements 

 Measurements to monitor CO2 at the Earth’s surface are usually 
accurate to within 1 ‰ for multi-year means. 

 This specification penalises their spread over the globe. 
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CO2 remote sensing from space 

 Measuring CO2 indirectly from its radiative effect. 

 CO2 signal is in competition with that of clouds, aerosols, etc. 

 Massive volume of measurements. 

 No sounding in the presence of thick clouds or in the absence 
of source. 
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Stringent accuracy requirements for 

CO2 column retrievals 

Needs for CO2 flux inversion, given the amplitude of the expected signal: 

- Random errors < 2%. 

- Systematic errors < 1.25 ‰ (3 ‰ pour CH4). 

Very ambitious for satellite measurements. 
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Growing investment from the space 
agencies 

 Partial column products from non-CO2-dedicated missions: 

 TOVS, AIRS, IASI, TES. 

 

 Total column products from CO2-dedicated missions: 

 Japan: 

 GOSAT (JAXA/NIES/MoE), launched in 2009.  

 GOSAT-2 (JAXA/NIES/MoE), planned for 2018.  

 USA: 

 OCO (NASA), failed launch in 2009.  

 OCO-2 (NASA), launched in 2014.  

 China: 

 TanSat (CAS, MOST, CMA) planned for 2015. 

 Europe: 

 Sciamachy (ESA), 2002-2012. 

 More satellites are under study (US ASCENDS, France Microcarb, 
etc.). 

 

 

Chédin et al., JGR, 
2003. 
First satellite CO2 
retrievals (upper-trop. 
and Tropics) 
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CO2 remote sensing 

 The estimation problem is under-constrained: we complete the 
measurements with a priori information. The fusion of 
probabilistic information is rigorously expressed by Bayes’ 
theorem. 
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CO2 Profiles: OCO-2 



 8 

Atmospheric inversions 

 The estimation problem is under-constrained: we complete the 
measurements with a priori information. The fusion of 
probabilistic information is rigorously expressed by Bayes’ 
theorem. 
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Processing chain of the satellite 

measurements 

 Level 0 product: Raw measurements 

 

 L1: Calibrated measurements expressed in terms of radiances 

 

 L2: Profiles or columns of CO2 

 

 L4: Maps of sources and sinks of CO2 

We expect the end product to significantly increase our knowledge 
about CO2 surface fluxes. 

 

 

 

 

 

 

 

 

Theoretical uncertainty 
reduction for the GOSAT 
satellite  
(0=neutral; 1=perfect) 
 
Chevallier et al. (GRL, 2009) 
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Spread and biased GOSAT CO2 

global inversions (1/2) 

 2 GOSAT products or surface air sample measurements (2010), 
2 inversion systems, 2 versions of 1 of the transport models.  

source 

sink 

Global ocean mondial: sink between 0 and 2 GtC. 
Europe: sink between 1 and 2 GtC ? 
North Africa: source between 1 and 2 GtC ? 
Chevallier et al. (GRL, 2014) 
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Spread and biased GOSAT CO2 

global inversions (2/2) 

 Aircraft measurement campaigns in the Pacific do not support 
the CO2 meridional gradient inferred by the GOSAT retrievals.  

ΔCO2 denotes the difference  
in CO2 between 30◦N–60◦N  
and 20◦S–20◦N. 

Mean and range of 
meridional gradients 
that are supported by 

HIPPO aircraft 
measurements 

between 900 hPa and 
300 hPa collected 

during HIPPO 2 (Oct. 
2009) and HIPPO 3 

(Mar. 2010). 

Comparison between  
simulated and 
measured meridional 
gradients of CO2, 
and their relationship 
with inversion-
derived carbon 
fluxes.  
 
Houweling et al.  
(JGR, 2015) 
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Processing chain 

L0 (raw measurements) 

 

L1 (calibrated radiances) 

 

L2 (CO2 retrievals) 

 

L4 (CO2 fluxes) 

 The steps are spread between various institutes. 

 Is the resulting chain consistent from end to end? 

 Only mitigation measure so far: averaging kernels KH (linear 
representation of the weighting of information content of the retrieval). 

 xsim  = xb + KH(xmodel – xb) 

 

 

 

 

 

 

 

x: retrieval vector (mostly CO2 profile) 
xb: retrieval prior of x 
xmodel: direct model output 
xsim: model-equivalent of x 
K: retrieval gain matrix 
H: linear retrieval observation 
operator (mostly radiation model) 
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Processing chain 

 From satellite radiances to CO2 retrievals (using a radiation model H). 

 Optimal state xa = xb + K(y – Hxb)   (1) 

 K = BHT(HBHT + R)-1 

 Uncertainty A = (I – KH) B 

 

 

 From CO2 retrievals to estimated fluxes (using a transport model H 
and – indicated with primes – the averaging kernel KH). 

 Optimal state xa  = xb + K’(y’ – H’xb)   (2) 

= xb + K’(Ky – KHHxb )  (3) 

= xb + K’K(y – HHxb)  (4) 

 K’ = BH’T(H’BH’T + R)-1 , with H’ = KHH 

 Uncertainty A = (I – K’H’) B 

 

 

 

y: observation vector  
B: prior error covariance matrix 
R: observation error covariance 
matrix 
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Gain matrices K 

 From CO2 retrievals to estimated fluxes. 

 

 K’K = BH’T(H’BH’T + R)-1 BHT(HBHT + R)-1 

 We want this product to be a gain matrix itself so that: 

 K’K = BHTHT (HHBHTHT + R)-1  

 If H ≠ I, we need: 

1. HBHT = HHBHTHT      -> consistent prior error 
     statistics in radiance space 

2. HTKT (KHBHTKT + R)-1 B = I  -> KH ≈ I 

 

Chevallier (ACPD, 2015) 
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Consistent prior error statistics? 
Correlations 

HBHT in the LSCE 
inversion system 
 
Both axes are 
vertical  
pressures (hPa) 

B in the ACOS 
retrievals 
 
Both axes are 
vertical 
pressures (hPa) 
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Consistent prior error statistics? 
Standard deviations 

HBHT in the LSCE 
inversion system  
σcol ≈ 1-4 ppm 
 
The vertical axis 
shows  
pressures (hPa) 

B in the ACOS 
retrievals 
σ col = 12 ppm 
 
The vertical axis 
shows  
pressures (hPa) 
 
O’Dell et al. (2012) 
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Changing B 

 Regenerating the retrievals with a different B (collab. with C. 
O’Dell, CSU). 

 

 ACOS b3.5, high-gain, medium-gain, nadir, glint. 

 New B (hereafter B’) from a frozen climatology of prior error 
statistics (latitude, month, geotype). 

 

 Ad hoc bias-correction based on MACCv13.1 and using the same 
parametric formula than ACOS-GOSAT (2×5+4 parameters). 

 

 4 inversions compared over 4 years (2010-2013): 
 MACCv14.2 (surface). 

 ACOSHM: Standard b3.5, H-gain and M-gain. 

 ACOST
HM: b3.5 with B’, H-gain and M-gain. 

 ACOST
H: b3.5 with B’, H-gain only. 
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Inverted annual regional budgets 
over land with 1 σ 
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Conclusions 

 Satellite-based atmospheric inversions use small XCO2 signals, that 
need to be carefully extracted and characterized. 

 Renews the problem of remotely sensing atmospheric 
composition. 

 Need of better statistical consistency from radiances to fluxes. 

 Official retrievals do not properly account for prior information. 

 Averaging kernels do not peak at the right altitude. 

 Noticeable impact on subcontinental annual budgets (not just 
random noise). 

 Solutions to tailor existing retrievals to each individual inversion 
scheme should be offered (through linear algebra) in the same 
way as averaging kernels are systematically provided. 

 Other smaller issues in the retrievals remain to be solved: 

 Underestimation of atmospheric growth rate, 

 Inclusion of medium-gain data, 

 High latitudes. 
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Back-up slides 
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XCO2 4-yr mean GOSAT and MACC 

surface inversion 

ACOS-GOSAT 
b3.4 

MACC  
v13.1 

Chevallier (ACPD, 2015) 
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surface inversion 

ACOS-GOSAT 
minus MACC  

# of data 

Chevallier (ACPD, 2015) 
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Misfits vs. retrieval increment – H gain 

(land) 

o Misfit bias    
o b: retrieval prior 
o a: raw retrieval 
o a,c: bias-corrected retrieval  
o MACC = no AK  MACC vs. TCCON ~ 0±0.9 ppm 

 

Variability  
of XCO2

b:  
σ = 3 ppm 

 
Random 
Bias 

Chevallier (ACPD, 2015) 

Size of the retrieval 
increment 
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Misfits vs. retrieval increment – H gain 

(land) 

o Misfit bias   and std. 
o b: retrieval prior 
o a,r: revised retrieval (AK/2), without any bias-correction 
o Unchanged abscissa 
o MACC = no AK  MACC vs. TCCON ~ 0±0.9 ppm 

 
 

Random  
Bias  

Chevallier (ACPD, 2015) 


