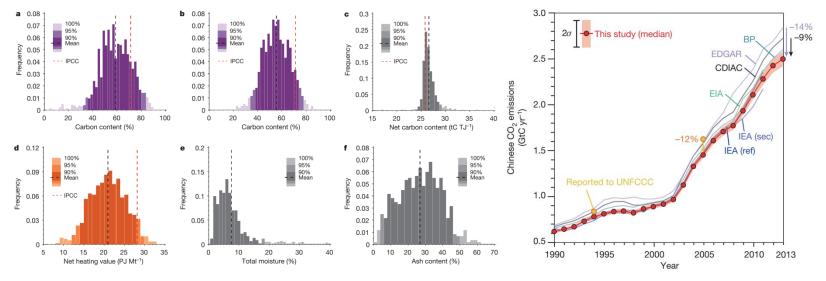


Underestimated N₂O emissions from China's croplands

Z.Y. Shang, F. Zhou, P. Ciais, S.L. Piao, H.Q. Tian, E. Saikawa, C.S. Li, H. Yang, etc PKU Sino-French Institute of Earth System Science

September 25, 2015, Shenzhen


1. Background

LETTER

doi:10.1038/nature14677

Reduced carbon emission estimates from fossil fuel combustion and cement production in China

Zhu Liu^{1,2,3}, Dabo Guan^{4,5}, Wei Wei⁶, Steven J. Davis^{2,7}, Philippe Ciais⁸, Jin Bai⁹, Shushi Peng^{8,10}, Qiang Zhang⁴, Klaus Hubacek¹¹, Gregg Marland¹², Robert J. Andres¹³, Douglas Crawford-Brown¹⁴, Jintai Lin¹⁵, Hongyan Zhao⁴, Chaopeng Hong^{4,16}, Thomas A. Boden¹³, Kuishuang Feng¹¹, Glen P. Peters¹⁷, Fengming Xi^{2,18}, Junguo Liu^{19,20,21}, Yuan Li⁵, Yu Zhao²², Ning Zeng^{23,24} & Kebin He¹⁶

Energy consumption was 10% higher and EF for coal was 40% lower than IPCC default values, resulting in 14% lower than EDGAR V4.2 in 2013

Liu et al., 2015, Nature 524, 335–338

1. Background

- $E_{N2O} = EF_{N2O} \times N_{rate} + Background E^0$
- EF_{N20}: IPCC (1% for upland, 0.3% for paddy)
 Mean (1.1% for upland, 0.6% for paddy from Chinese dataset)

But, it varies widely because of very few obs representative the EF across China

- N_{rate}: =Activity data (i.e. chemical fertilizers, livestock, rural population, crop production) × Coefficients (i.e. N contents in manure and excreta, ratios of manure and residues returned to croplands) with ~50% differences between several datasets
- → large uncertainty (up to 46%: 4.7Tg [EDGAR] vs. 5.7 Tg [inversion] vs. 7.0 Tg [DLEM])
- E⁰: IPCC (~0 kgN/ha), but little is known in background emissions in China's croplands

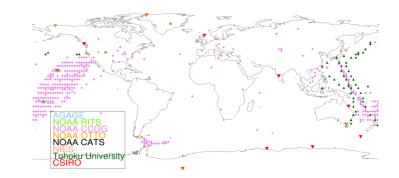
Tian et al., 2014; Saikawa et al., 2014; Zhou et al., 2015

1. Background

Therefore, we developed or produced a **high-resolution & time-varying** data (1990-2012) of:

- EF_{N20} (upland & rice) constrained by N₂O observations;
- N_{rate} (Chemical fertilizers, manure, human excreta, and crop residues) harmonized by local statistics and enhanced surveys across China;
- E⁰ constrained by N₂O observations at N_{rate}=0 (by using closed or dynamic chambers);

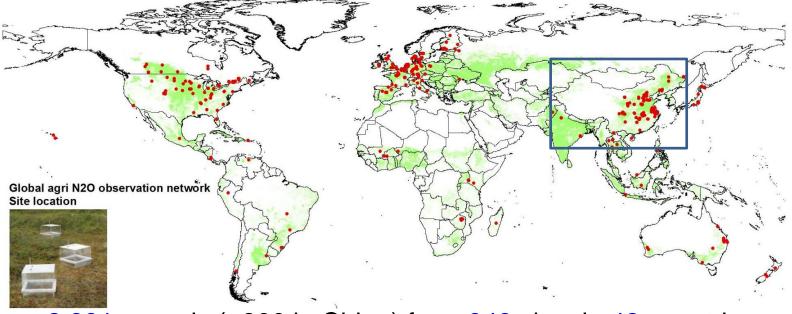
N₂O emissions from croplands for the period 1990-2012


• Flux upscaling technique: Bayesian recursive regression tree algorithm

Obs
$$E_{N_2O} = EF(x_k) \cdot N_{rate} + E^0(x_k)$$
 Environmental factor
where $EE(x_k) \cdot N_{rate} + E^0(x_k)$ N fertilizer application rate

$$EF(x_k) = \Delta EF(x_k) \cdot N_{rate} + EF^0(x_k)$$

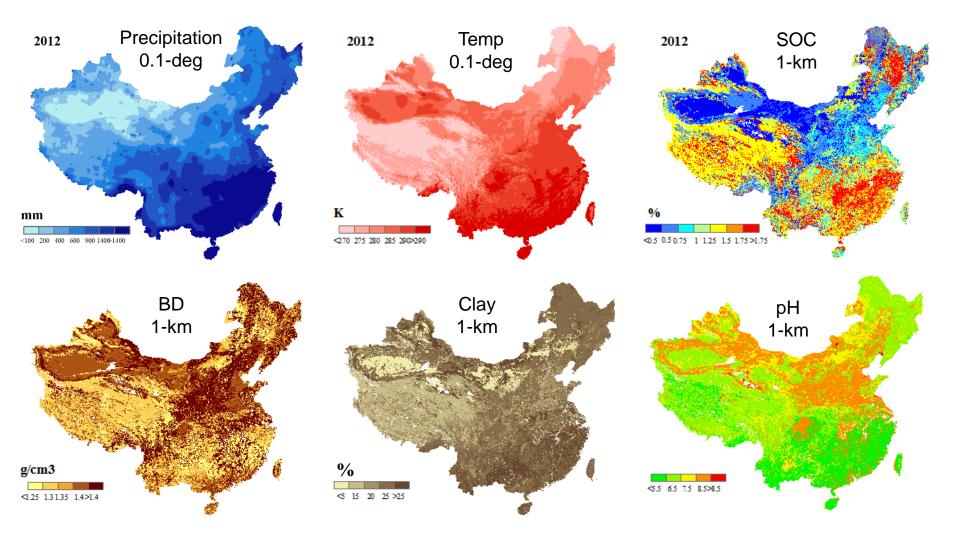
- Process-based modeling: DLEM, DNDC, DAYCENT, which have been calibrated by flux towers but without using new Chinese N_{rate} maps
- Bayesian inverse modeling: Saikawa et al. (2014) but was updated by


Prior in China: this study & Zhou et al (2014) Prior in others: EDGAR v4.2, GEFD Prior for natural: CLMCN-N₂O Prior for ocean: Manizza et al. (2012) Transport model: MOZART

Del Grosso et al. (2009); Li et al. (2010); Saikawa et al. (2014); Tian et al. (2014); Zhou et al., 2014; 2015

2.1 Global agricultural soil N₂O observation networks

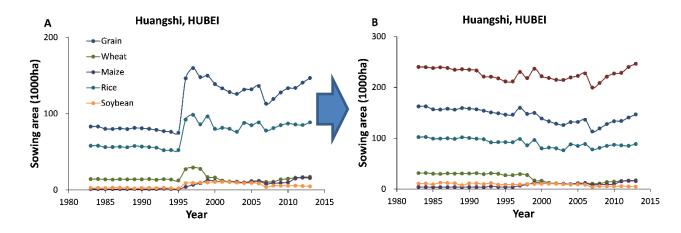
Upscaling involves inter- and extrapolation. It is important to note that it is not **geographical** space which determines if inter- or extra- takes place but **environmental** space



2,831 records (~800 in China) from 348 sites in 42 countries

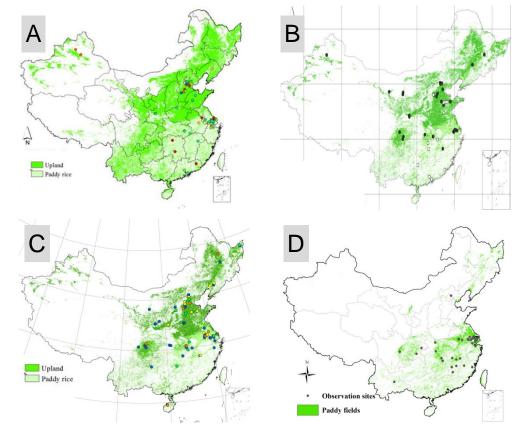
Data source: >1500 journal articles and unpublished data from co-authors

From 34 Research groups


2.2 Environmental factors (*x_k*, 1990-2012)

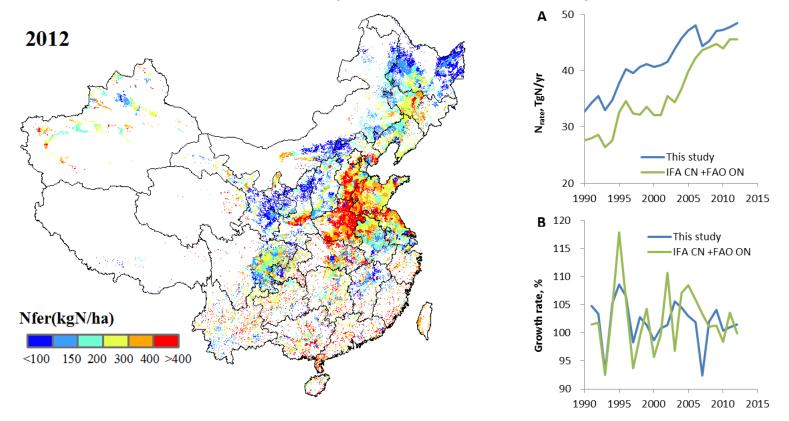
CMFD, 2012; HWSD, 2011, Yu et al., 2012

2.3 County-based activity data (1990-2012)

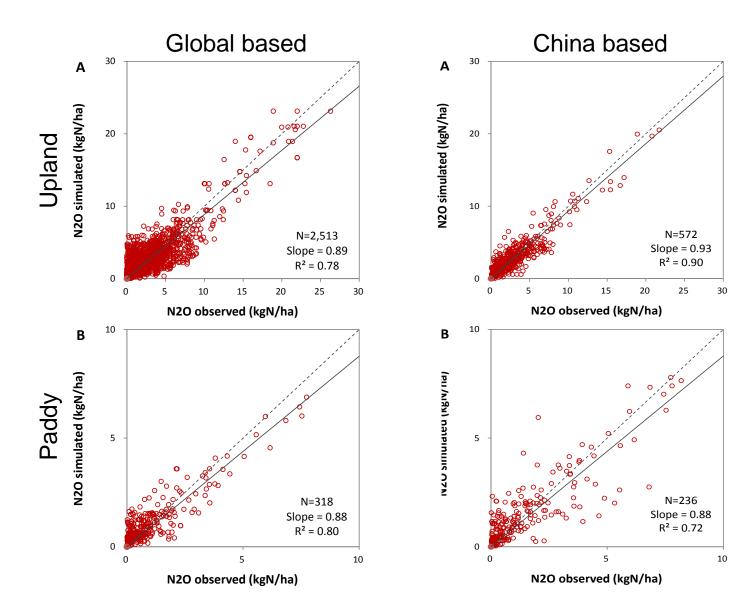

- N_{rate}= (Chemical fertilizers [CN] + manure +excreta + crop residues) / sowing area → <u>CN, livestock, crop, rural population, sowing area</u>
- Changing in number (2,833~2,862), administrative division, and names

- Missing data: interpolated based on data for near year
- Upland vs. paddy: SN and crop residues for two types, but manure, human and excreta only for upland soils

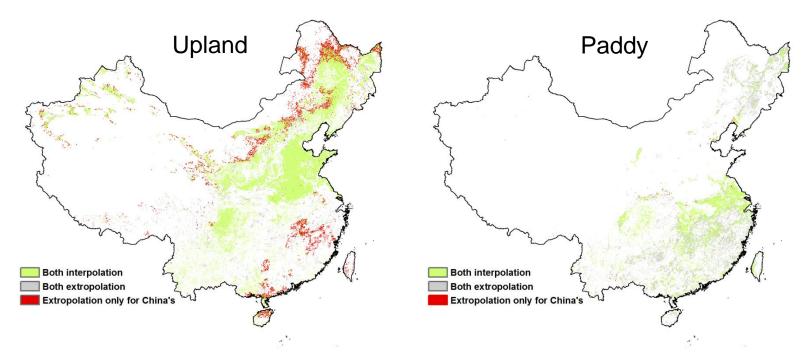
2.4 County-based coefficients (1990-2012)


 <u>N contents in manure and excreta, ratios of manure and residues returned</u> <u>to croplands</u> based on observations > 400 counties in high-fertilized cropping areas

A: N content in manureB: N content in residuesC: ratio of manure to soilsD: ratio of residue to soils

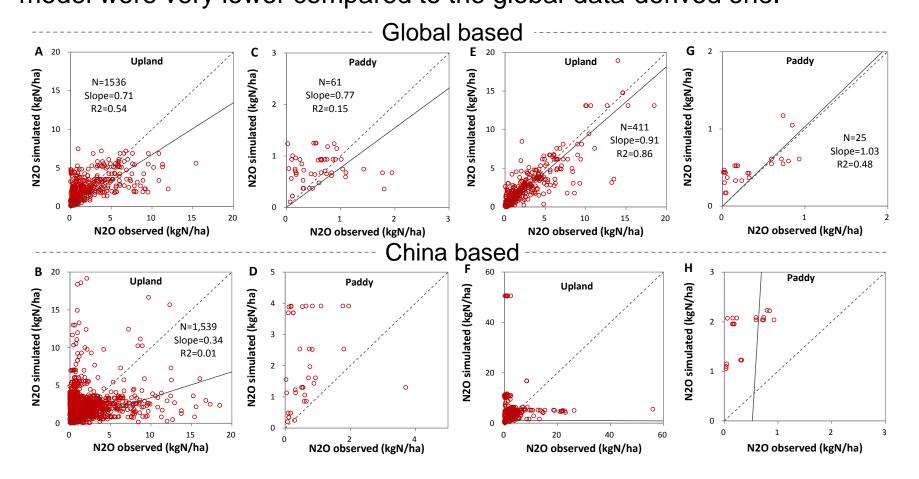

3.1 N_{rate} (1990-2012) at 1-km scale

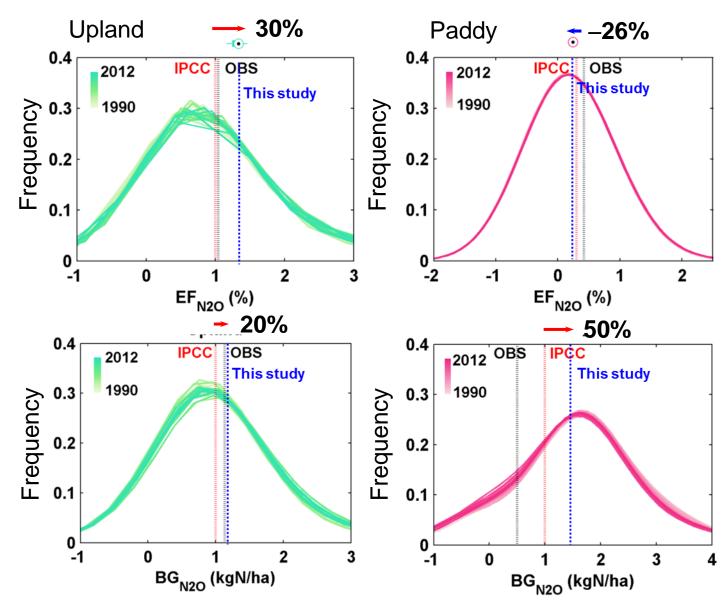
We estimate that cumulative N_{rate} was 16% greater than IFA mass-balance results *, but our results indicate a lower annual growth rate of N_{rate} (9%/yr vs. 12%/yr). We will compare with the growth rate of NH₃ columns (molec/cm²) derived from IASI satellite observation for 2007-2012 (Van Damme et al. 2014).



* IFA mass-balance results=IFA CN+ FAO manure + crop residues

3.2 EF_{N20} and E⁰ (1990-2012)--calibration

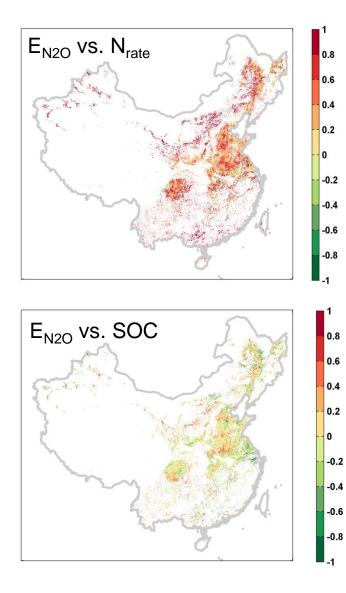

3.2 EF_{N20} and E⁰ (1990-2012)--Interpolation and extrapolation

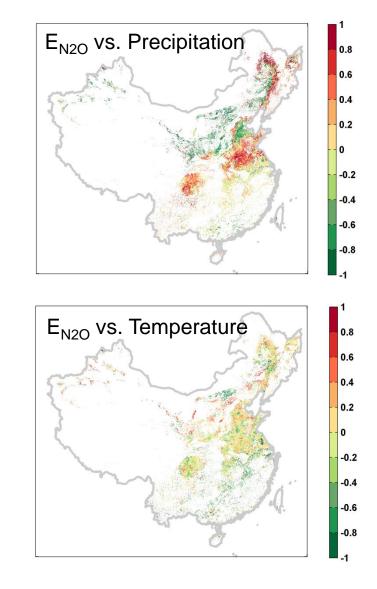

	Upland soils			Paddy soils		
Models	Global based	China based	Δ	Global based	China based	Δ
Interpolation	96%	87%	-9%	74%	73%	-1%
Extrapolation	4%	13%	9%	26%	27%	1%

3.2 EF_{N20} and E⁰ (1990-2012)--Interpolation and extrapolation

The interpolation and extrapolation capabilities of the China-data-derived model were very lower compared to the global-data-derived one.

3.2 EF_{N2O} and E⁰ (1990-2012)—Inter-comparison


Based on globalderived model, we derive new EFs for upland and paddy soils. The revised EFs differ from IPCC defaults by 30% and -26%. The background emissions were 20% and 50%


greater than IPCC defaults (1 kgN/ha).

3.3 E_{N20} (1990-2012)—multi-model validation

Confidential

3.4 E_{N20} (1990-2012)—Drivers of its trends

3.5 E_{N20} (1990-2012)—Inter-comparison

Confidential

4. Implications

- Our new estimate represents a substantial revision of annual global CO₂ emissions, increasing the global emissions in 2012 by 0.1 PgCO₂e, 20% of the reported increase in global carbon emissions from 2011 to 2012, and a half of the estimated carbon sink in China's forests (0.18 GtC/yr) →it implies a considerable revision of the global GHGs budget.
- Over the full period 1990-2012, the upward revision of cumulative N₂O emissions in China by 2.1 PgCO₂e is comparable with China's land C sink in 2000-2009 (2.6 GtC) and downward estimate of cumulative CO2 emissions (2.9 PgC, 2000-2013) by Liu et al. (2015)
- Thus, China needs to continuously reduce GHGs, especially through the application of the advanced agricultural management in future and adaption of climate changes

Piao et al., 2010; Pan et al., 2011; Global Carbon Project, 2013; Liu et al., 2015