

From a conceptual soil hydrology scheme towards a multilayer soil diffusion scheme in the LSM ORCHIDEE

Matthieu Guimberteau

Outlines

Outlines

DRCH generalities

Conceptual

Soil water notions

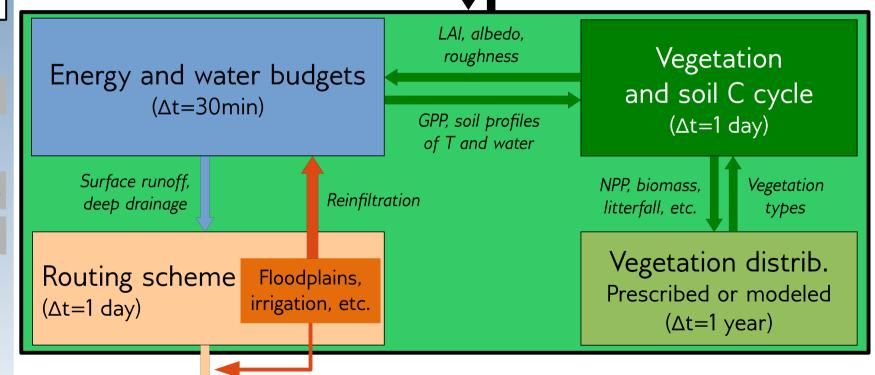
- > ORCHIDEE Generalities
- Soil hydrology schemes
 - The conceptual model
 - The physically-based model
 Fundamental notions of soil water movement
 Modeling in ORCHIDEE

ORCHIDEE - Generalities

ORCHIDEE

Atmosphere Prescribed or modeled (LMDZ)

Outlines


ORCH generalities

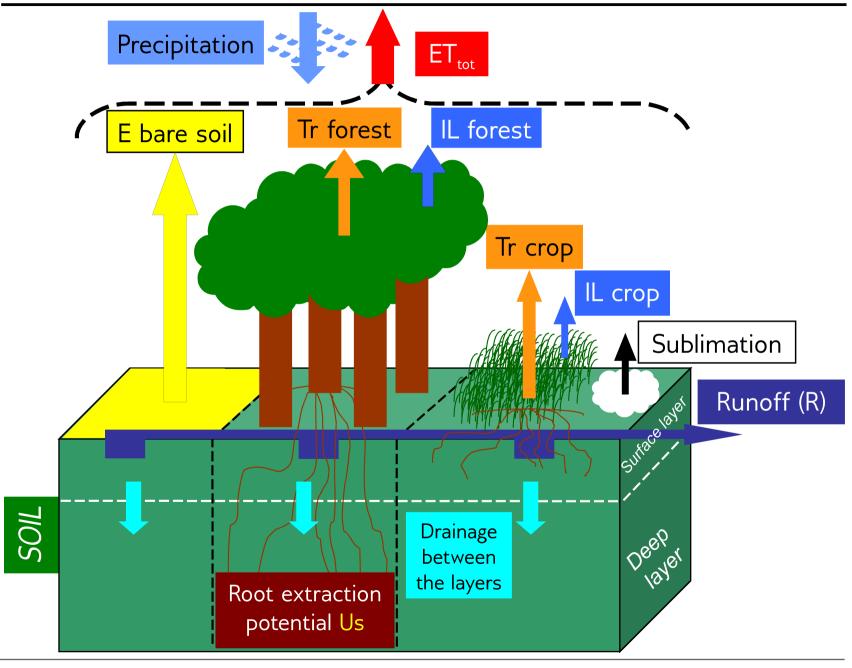
Conceptual

Soil water notions

ORCHIDEE

P, Qair, Tair, wind, LE, H, Ts, albedo, roughness, pressure, radiation, [CO2] net radiation, CO2 fluxes

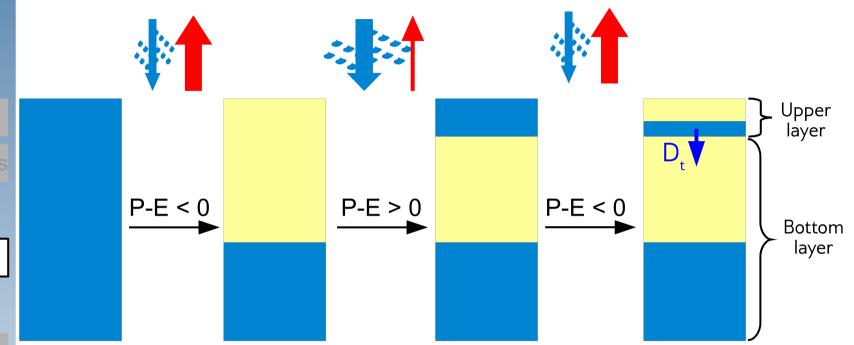
River discharge


The hydrological modeling

Outlines

ORCH generalities

Conceptual


Soil water notions

Soil hydrology schemes

1 – The conceptual model

Main principles

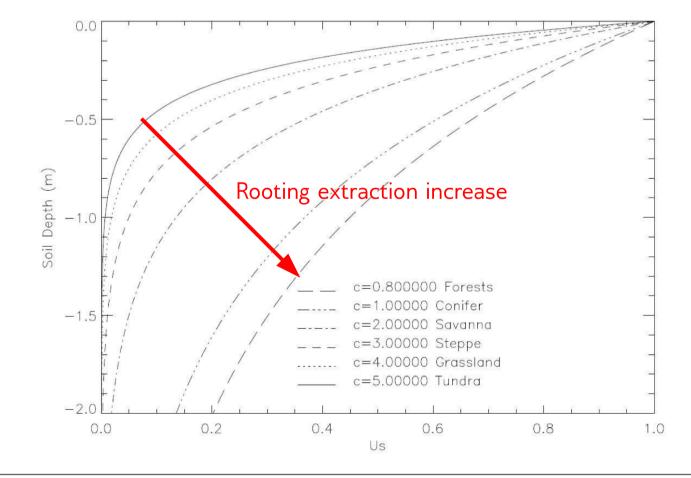
Soil water notions

Conceptual

ORCHIDEE

Dry soil

Saturated soil


Ducoudré et al. (1993), de Rosnay et al (1998)

- > Runoff only occurs when the soil is saturated
- No drainage from the soil

Water stress function, Us

- > It conveys the water stress onto transpiration
- > It depends on dry soil depth

$$Us = \exp(-c_v.h_{totdry})$$

Outlines

ORCH generalities

Conceptual

Soil water notions

- Simple, limited number of parameters
- Easy to use
- Widely tested by many users now

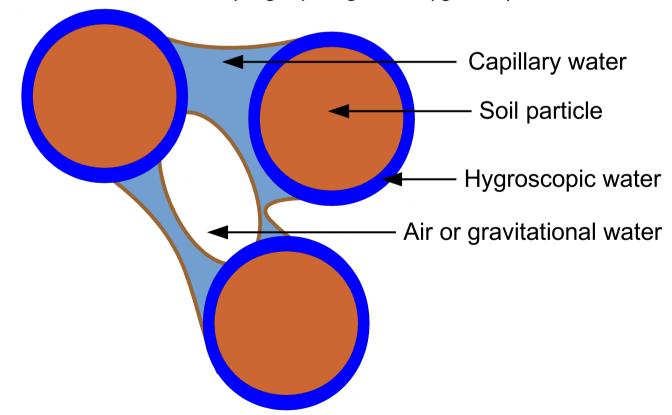
- No physical representation of the water movement in the soil
- The comparison with measurements is difficult
- No distinction between
 surface runoff and
 drainage => problem for
 streamflow simulation

CH generalities

Conceptual

Soil water notions

Soil hydrology schemes


2 – The physically-based model

Soil hydrology schemes

- 2 The physically-based model
- 2-1. fundamental notions of soil water movement

The soil

- Porous medium. Matrix of individual solid granular particles (grains)
- > Between each grains: interconnected pore spaces that contain varying fractions of water and air
- Water is attracted to soil particles
- Soil dries => water is held more tightly to grains => capillary water disappears
 => only a thin film of water held very tightly to grains (hygroscopic water)

Outlines

DRCH generalities

Conceptual

Soil water notions

The soil moisture content

Outlines

ORCH generalities

Conceptual

Soil water notions

ORCHIDEE

- The volumetric soil water content (or soil moisture content) measures the volume occupied by water
- Vary in both time and space.

$$\theta = \frac{V_w}{V_s}$$

 V_{w} , volume of liquid water V_{s} , volume of soil

The porosity of the soil

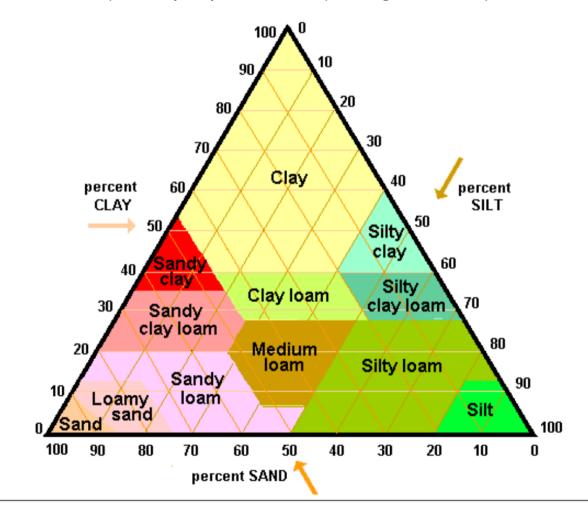
Outlines

DRCH generalities

Conceptua

Soil water notions

ORCHIDEE


- Proportion of pore spaces in a volume of soil
 - constant over the time periods
 - decreases with depth (compaction)
- > $0 < \theta < \phi$ when the soil moisture content reaches the porosity => the soil is saturated

$$\phi = \frac{(V_a) + (V_w)}{V_s}$$

Va, volume of air Vw, volume of liquid water Vs, volume of soil

The texture of the soil

- Most soils have a mixture of grain sizes
- The particle size distribution is characterized by the soil texture
 - > determined by the proportions by weight of clay, silt and sand

- Outlines
- ORCH generalities
 - Conceptual
- Soil water notions
 - ORCHIDEE

Hydrological horizons and water movement

Outlines
I generalities
Interflow
Root zone
(soil-moisture zone)
Plant/uptake
Intermediate
zone
Gravity
drainage

Transpiration

Vadose zone (capillary fringe)

Water | Capillary | Recharge

Ground-water zone (phreatic zone)

Impermeable layer

- Redistribution: the subsequent movement of infiltrated water in the unsaturated zone of a soil => evaporation or capillary rise or recharge or interflow
- $\rightarrow \theta wp < \theta < \phi$
- May extend over many ten meters
- May be absent in other soil regimes
- Tension-saturated zone
- > The soil is saturated due to capillary rise

Soil water notions

ORCHIDEE

zone

Saturated

The water flow in the soil

Outlines

ORCH generalities

Conceptua

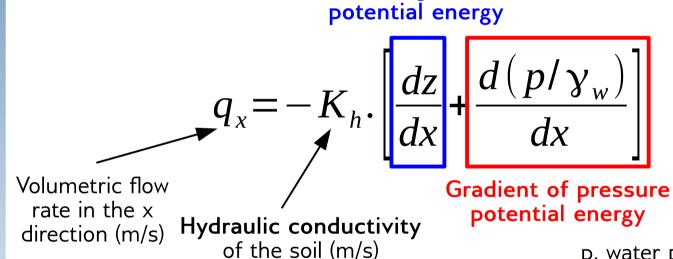
Soil water notions

- Controlled by the size and shape of pores, which is in turn controlled by the size and packing of soil particles.
- Unsaturated flow: when some of the voids are occupied by air
- Saturated flow: when all the voids are occupied by water

Darcy's law for unsaturated flows

> Describes the flow rate across a unit cross section of soil

Gradient of gravitational


Outlines

DRCH generalities

Conceptual

Soil water notions

ORCHIDEE

<=>

ability of the soil to "conduct" water p, water pressure γ_{w} , weight density of water

Darcy's law for unsaturated flows

Outlines

DRCH generalities

Conceptual

Soil water notions

ORCHIDE

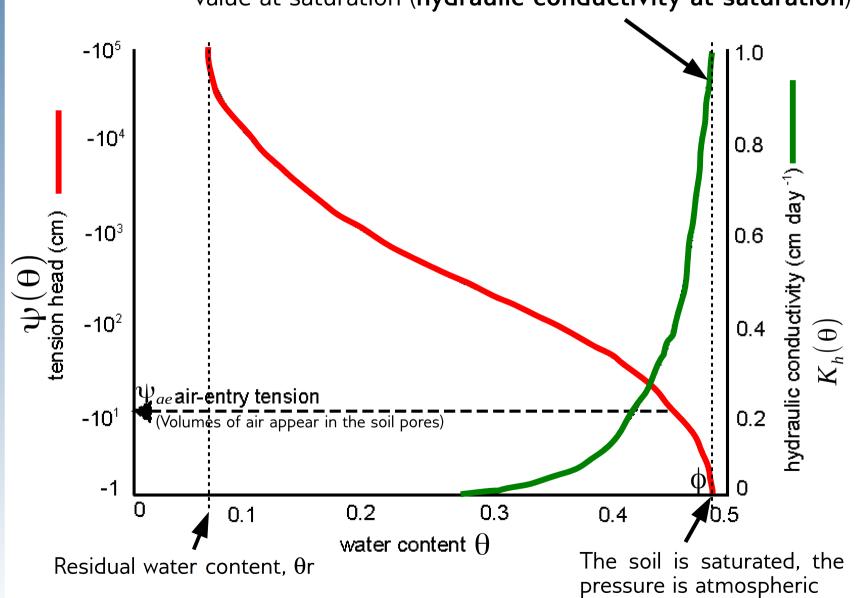
We focus on the vertical component of flow (z direction)

$$q_z = -K_h \cdot \left[1 + \frac{d(p/\gamma_w)}{dz} \right]^{-\frac{Pressure head, \psi}{(\gamma_w \text{ is constant})}}$$

> In unsaturated flows, both ψ and K_h are functions of θ , so:

$$q_z = -K_h(\theta) \cdot \left[1 + \frac{d \psi(\theta)}{dz} \right]$$

> In unsaturated soils, ψ < 0. Negative pressure head is also called tension head, matric potential or matric suction

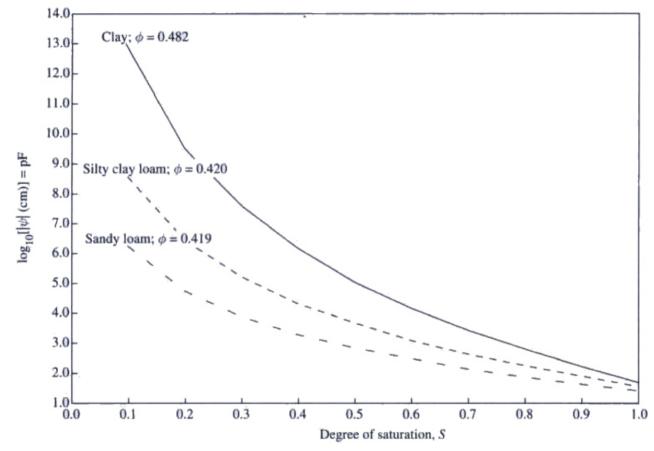

Relation between ψ and θ

K_h increases with increasing soil moisture to is maximum value at saturation (**hydraulic conductivity at saturation**)

RCH generalities

Conceptua

Soil water notions


Relation between ψ and soil types

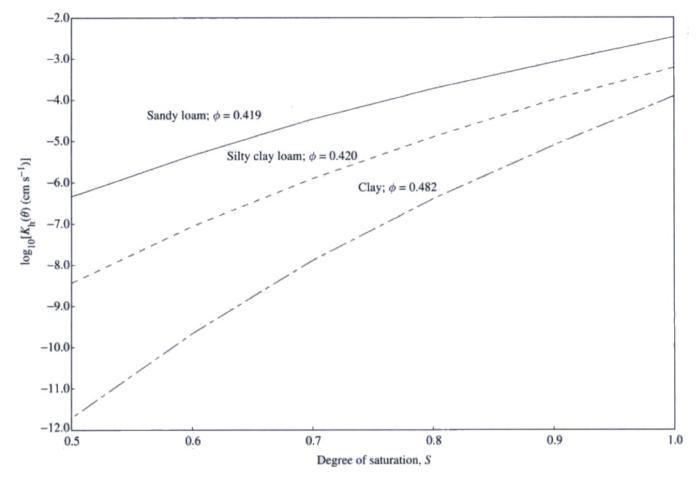
Outlines

DRCH generalities

Conceptua

Soil water notions

- ψ depends on soil types
- \succ For a given degree of saturation, ψ is much higher in fine-grained soils than in coarser-grained soils
- > The value of tension for a given water content also depends on the history of wetting and drying


Hydraulic conductivity for different soils

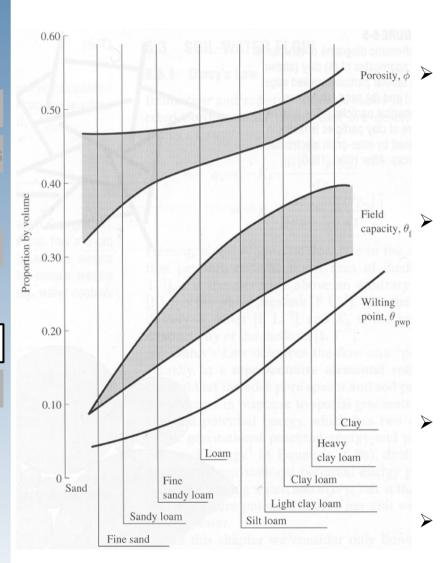
Outlines

ORCH generalities

Conceptua

Soil water notions

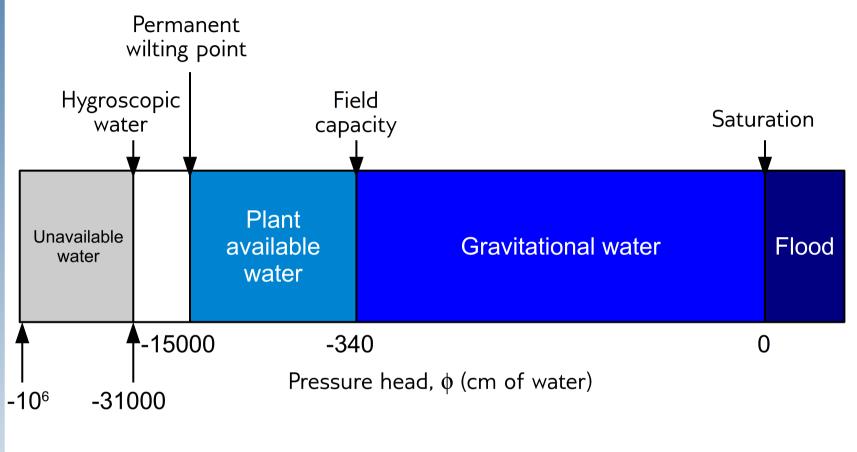
- K_h depends on soil types
- For a given degree of saturation, K_h increases by several orders of magnitude from fine-grained soils to coarse-grained soils (water path is less sinuous <=> less resistance to flow)


Soil water

Outlines

Conceptual

Soil water notions


ORCHIDEE

Field capacity, θfc: maximum amount of water that a soil can hold after gravitational drainage Wilting point, θwp: water content at which plants can no longer extract water from the soil

- Plant available water content, θ a: water available for plant use
- They vary depending on the soil

Soil water status as a function of pressure

Soil water notions

Increasing water content

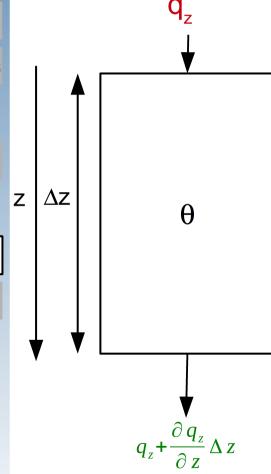
Outlines

ORCH generalities

Conceptua

Soil water notions

- It is widely used as a basis for numerical modeling soil water flow:
 - by specifying appropriate boundary conditions
 - by dividing the soil profile into very thin layers
 - by applying the equation to each layer sequentially over small increments of time


We assume 1D vertical water flow below a flat surface:

Outlines

DRCH generalities

Conceptual

Soil water notions

We assume 1D vertical water flow below a flat surface:

 Δz Ζ θ

 $q_z + \frac{\partial q_z}{\partial z} \Delta z$

Conservation of the mass:

$$\frac{\partial \Theta}{\partial t} \Delta z = \mathbf{q}_z - \left(q_z + \frac{\partial}{\partial z} q_z \cdot \Delta z \right)$$

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} q_z$$

Combining Darcy's law (z<0 because the "point" is below the surface):

$$q_z = -K_h(\theta) \cdot \left[-1 + \frac{\partial}{\partial z} \psi(\theta) \right]$$

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} K_h(\theta) + \frac{\partial}{\partial z} \left[K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta) \right]$$

Soil water notions

Outlines

ORCH generalities

Conceptua

Soil water notions

ORCHIDEE

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} K_h(\theta) + \frac{\partial}{\partial z} \left[K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta) \right]$$

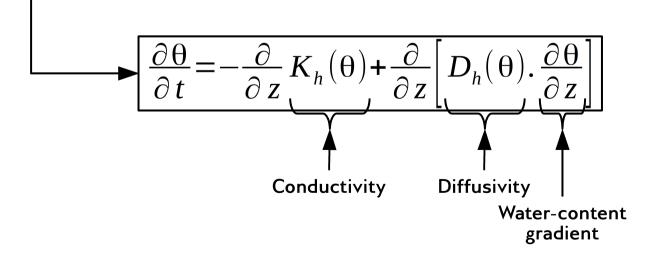
The time rate of change in volumetric soil moisture for a given thin layer of soil depends on:

- the vertical rate of change of the hydraulic conductivity
- the vertical rate of change of the product of:
 - the hydraulic conductivity
 - > the vertical rate of change of the pressure head

The Fokker-Planck equation

Outlines

DRCH generalities


Conceptual

Soil water notions

$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} K_h(\theta) + \frac{\partial}{\partial z} \left[K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta) \right] -$$
Hydraulic diffusivity (m²/s):
$$D_h(\theta) = K_h(\theta) \cdot \frac{\partial}{\partial \theta} \psi(\theta)$$

$$D_h(\theta) \cdot \frac{\partial \theta}{\partial z} = K_h(\theta) \cdot \frac{\partial}{\partial \theta} \psi(\theta) \cdot \frac{\partial \theta}{\partial z}$$

$$D_h(\theta) \cdot \frac{\partial \theta}{\partial z} = K_h(\theta) \cdot \frac{\partial}{\partial z} \psi(\theta)$$

Soil hydrology schemes

2 – The physically-based model 2-2. Modeling in ORCHIDEE

The hydrodynamic parameters

- > K_h and D_h depend on saturated properties of the soils and on θ
- \succ Their dependence on θ are very non linear
- In ORCHIDEE, this is described by the Van Genuchten-Mualem relationships

		K_s $mm \cdot j^{-1}$	n	m^{-1}	$theta_r \\ m^3.m^{-3}$	$theta_s$ $m^3.m^{-3}$	3
_	Sand	7128.0	2.68	14.5	0.045	0.43	_
	Loamy Sand	3501.6	2.28	12.4	0.057	0.41	
	Sandy Loam	1060.8	1.89	7.5	0.065	0.41	
	Silt Loam	108.0	1.41	2.0	0.067	0.45	
	Silt	60.0	1.37	1.6	0.034	0.46	Values of Van
	Medium Loam	249.6	1.56	3.6	0.078	0.43	Genuchten's parameters
	Sandy Clay Loam	314.4	1.48	5.9	0.100	0.39	(Carsel and Parrish, 1988
	Silty Clay Loam	16.8	1.23	1.0	0.089	0.43	
	Clay Loam	62.4	1.31	1.9	0.095	0.41	
	Sandy Clay	28.8	1.23	2.7	0.100	0.38	
	Silty Clay	4.8	1.09	0.5	0.070	0.36	
	Clay	48.0	1.09	0.8	0.068	0.38	

- Outlines
- **DRCH** generalities
 - Conceptua
- Soil water notions
 - **ORCHIDEE**

The hydrodynamic parameters

$$\psi(\theta) = -\frac{1}{\alpha} \left[\left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right)^{-\frac{1}{m}} - 1 \right]^{\frac{1}{n}}$$

Outlines

RCH generalities

Conceptual

Soil water notions

ORCHIDEE

$$K_h(\theta) = K_s \sqrt{\left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)} \left[1 - \left(1 - \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{\frac{1}{m}}\right)^m \right]^2$$

$$D_h(\theta) = \frac{\left(1 - m\right)K_h(\theta)}{\alpha m} \frac{1}{\theta - \theta_r} \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{-\frac{1}{m}} \left(\left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{-\frac{1}{m}} - 1\right)^{-m}$$

- > θ_s : saturated water content (m³/m³)
- θ_r : residual water content (m³/m³)
- K_s: hydraulic conductivity at saturation (m/day)
- $^{\succ}$ α : Van Genuchten parameter (m⁻¹), related to the inverse of the air entry suction
- > m and n: Van Genuchten parameters related to pore-size distribution. m=1-1/n according to the Mualem model.

Defined based on soil texture

In each grid-cell, we use the dominant texture from the USDA map

Vertical discretization

- > The soil column is discretized using 11 nodes (geometric increase of internode distance)
- Total water content of a layer: vertical integration of $\theta(z)$ in the layer (assuming a linear variation between the 2 nodes)
- \succ Permit an accurate calculation of Θ i and the related water fluxes Qi
- \succ Thin layers on the top soil where θ is likely to exhibit sharp vertical gradients

Outlines

ORCH generalities

Conceptua

Soil water notions

ORCHIDEE

de Rosnay et al., 2002; d'Orgeval et al., 2008

Boundary conditions

Outlines

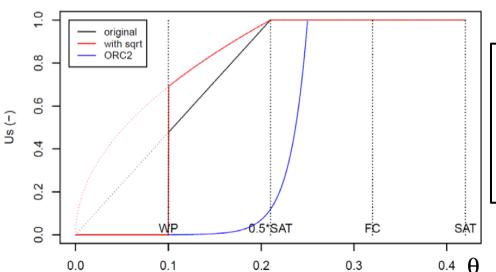
ORCH generalities

Conceptual

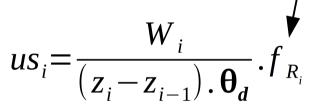
Soil water notions

ORCHIDEE

- \succ The evolution of θ i is driven by:
 - > soil properties $(K_h, D_h, \theta_r, \theta_s, soil depth and Z_i)$
 - > transpiration sink: uniform diffuse sink term in each soil layer
- Top and bottom boundary conditions:
 - $ightharpoonup Q_0 = Infiltration Evap$
 - $Arr Q_{11} = F.K(\theta_{11}) = Drainage$


F=1 (gravitational drainage) or F=0 (impermeable bottom)

Water stress function, Us


 Coupling between the soil water distribution and the rooting demand at a given soil depth

$$\frac{W_{i}(t+dt)-W_{i}(t)}{dt} = Q_{i-1}(t+dt)-Q_{i}(t+dt)-S_{i}$$

 $S_i = \frac{us_i}{U_s} T_r \qquad U_s = \sum us_i$

Fraction of roots

$$\theta_d = 0.5 \Phi$$

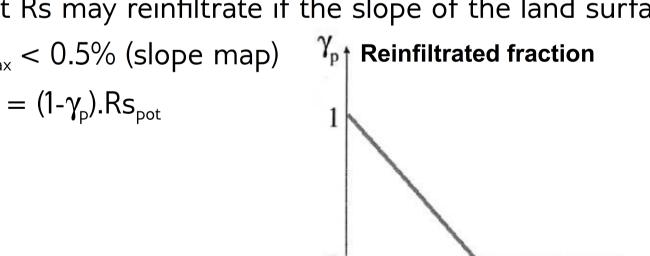
Critical water content from which water extraction by the roots decreases with the water content of the soil layer

Outlines

DRCH generalities

Conceptua

Soil water notions


Infiltration and runoff

- \triangleright At the soil surface: throughfall (P_0) can either infiltrate or run off (Rs)
- In the first layer (1mm) => direct infiltration (I_i)
- \rightarrow If $P_0 > 1$ mm/dt => wetting front propagation with time splitting procedure
- ightharpoonup Rs_{pot} = P₀ \sum I_i

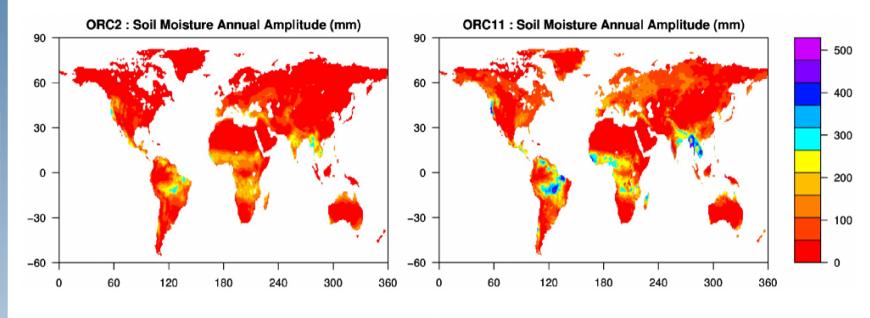
But Rs may reinfiltrate if the slope of the land surface

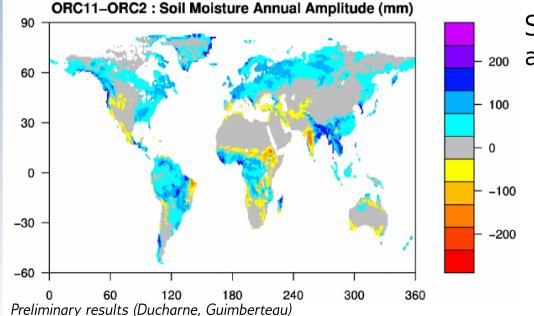
$$s_{max} < 0.5\%$$
 (slope map)

$$Rs = (1-\gamma_p).Rs_{pot}$$

ORCHIDEE

Slope (%)

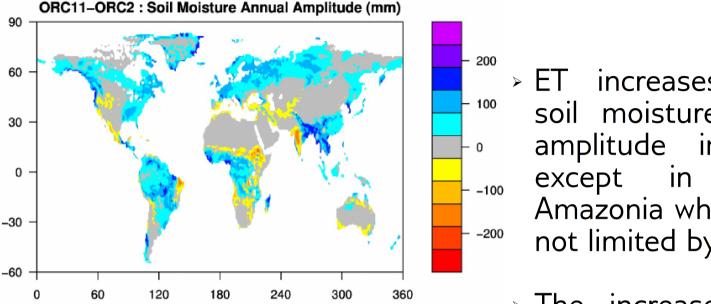

Results comparison


Outlines CH generalities

Conceptual

Soil water notions

ORCHIDEE



Soil moisture annual amplitude:

- defines the effective water holding capacity
- is maximum in "transition zones"
- with ORC11, it is larger in the rainy regions
- the transitions are more abrupt

Results comparison

ORCHIDEE

300

ORC11-ORC2: Evap (Year, mm/d)

> ET increases where soil moisture annual amplitude increases, except in central Amazonia where ET is not limited by water

- > The increase of ET mostly comes from soil evaporation
- > Transpiration mostly decreases, especially in transition / arid zones

0 60 120 180 24 Preliminary results (Ducharne, Guimberteau)

90

60

30

0

-30

-60

360

Results comparison

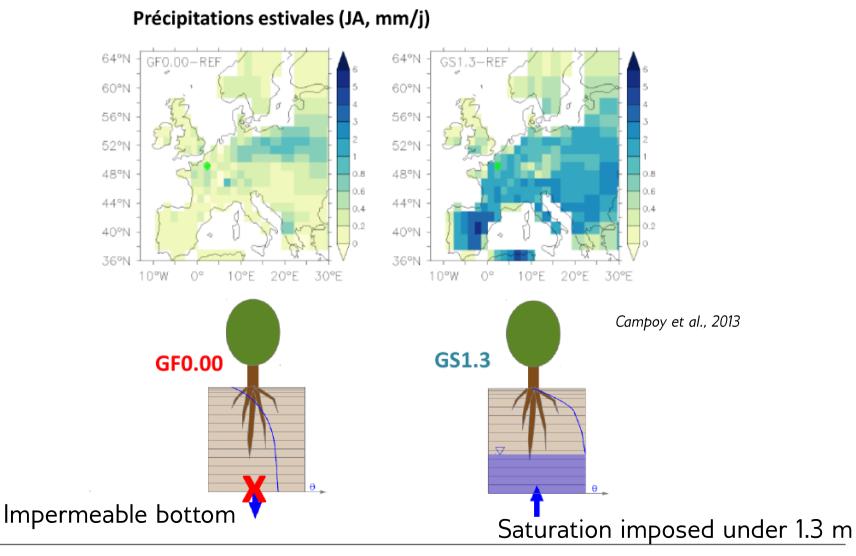
- Outlines
 CH generalities
- Conceptua
- Soil water notions

ORCHIDEE

- ORC11 has a larger soil evaporation (not limited by a soil resistance but by soil water diffusion to the top soil layer)
- Larger soil evaporation + drainage at the soil bottom => low soil moisture and low transpiration, despite increased water holding capacity
- This suggests ORC11 has a lower soil moisture memory than ORC2

Preliminary results (Ducharne, Guimberteau)

Perspective with the physically-based model


Link with the saturated zone

Outlines

DRCH generalities

Conceptual

Soil water notions

