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Why knowledge of cities CO, emissions is needed ?
Cities account for 70% of global emissions

L electricity

WO I I d Cltl €S Source IPCC, World Resources
Institute, World Bank
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Cities have a gigantic potential to reduce GHG
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Source IPCC, World Resources

Cities Low carbon cities | situe world Bank
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Cities In action
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Uncertainties of city-scale emission
Inventories are large

Cities are open systems, exchanging fuel and energy
High spatial, temporal & sectorial variability of emissions

Lack of knowledge limits the effectiveness of emission reductions

CO, emission inventories from lle de France (Paris region)

Max - Min
Resolution 0.1°x0.1° Imin x ITmin Tkm x Tkm Tkm x Tkm
Annual budget of Paris Urban Area (TgC per year)
Residential  6.75 5.36 5.65 7.80 31%
Road 8.50 6.03 3.63 3.37 60%
Industry 5.19 4.61 3.02 3.09 42%
Total 24.65 16.39 12.34 14.26 50%
,@, PKU-LSCE School
2y Sep 21-25 2015



Two emission maps for London
IER and UKNAEI
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Monitoring city scale emissions from the atmosphere

« Cities: the major part of CO, emissions over < 2% of land area

* Inventories either non existent or infrequently updated

» Political need for improving / verifying emissions and emission trends
* Few pilot city scale in situ CO, measurement networks

 Space borne datain the future

Measurement towers in Indianapolis (
NIST/ INFLUX project)

CO, Megacities project in L.A. (JPL/NASA)
See D Riley presentation
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The Paris In-situ measurement network

Developed since 2009 from research projects
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An urban station

'

PKU-LSCE School
Sep 21-25 2015




Inverse modeling of emissions

The atmosphere is a powerful integrator of surface fluxes

Air Parcel

«
o U

Samplé 1 Samplé 2
... but to unleash its power, dense sampling is needed

Air Parcel

Atmospheric measurements were already proven to be effective to quantify regional CO,
and CH, fluxes at all scales : global, continental, regional, country, local.

But we do not have a dense sampling of the atmosphere in space and in time to
elucidate the spatial details of fluxes beyond continental scales
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Transport of CO, In the atmosphere

Column CO, Mixing Ratio (ppmv)

Column CO Burden (1U’Bmolec cm'z) 01/01/2006, 0000 UTC
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Plumes of emissions
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CO, plume of Paris City
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Atmospheric transport modeling system

Eulerian transport model CHIMERE
Resolution 2 km (interpolated 15 km ECMWF winds) + numerical diffusion
Emissions : AIRPARIF in Paris + EDGAR in the domain outside Paris region

Surrounding vegetation and 2010-10-26_00:00:00
soils CO2 sources and sinks |
hourly from CTESSEL model

Atmospheric CO, lateral
boundary conditions

hourly from MACC v10.2
global transport model with o
optimized fluxes

50°N e i I—

0 2E 2°F ] BF

Goal : invert CQ2 emissions each 6 bomain of high resolution CO,
hour with 4 stations and vegetation simulation
fluxes each week for year 2010
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Starting point : inventory released in 2008

« Data compiled by local air quality agency
AIRPARIF

 Developed for pollutants, but contains CO,

 Resolution 1 km /hourly

« Simplified sectorial time profiles

 Version used here: 2008 — updated since

Assumed temporal variations of CO, emissions per sector
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Comparison of measured vs. simulated

concentrations
Hourly and afternoon CO, :Gf" ]
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Difficulties in simulating urban CO,

Large misfits unusual for inverse modeling applications (similar misfits
shown by other studies in the urban environment)

Wind roses of the model-data misfits at EIF for the full year of simulation

Lack of understanding of misfits at Eiffel tower: the site is ignored for the
inversion, use of peri-urban sites only

Q o) PKU-LSCE School
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Using city upwind —downwind gradients

Modeled vs. observed CO,after wind and time selection
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individual time series

PKU-LSCE School
Sep 21-25 2015

SUOITe]S [enpIAIpU|

sjualpelo



Results: data filtering and model-data misfits

© Good fit to the data after inversion
® Significant loss of data
Negative gradients with the looser selection
(high potential for aggregation errors)
Mid afternoon gradients used by the inversion
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1 year of emissions from the atmosphere

Nb of hourly gradient assimilated when SW/NE winds
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An independent check of the
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Fluxes /MtCO, month™

Fluxes /MtCO, month™

1 year of emissions from the atmosphere

Sensitivity of monthly budgets when
using subsets of gradients
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Discrepancies between
results using gradients when
NE vs. SW winds: impact
from remote fluxes
(emissions from NE France,
Benelux, Germany) or a
difference in time sampling ?

The problem is far less

critical when using the tight
gradient selection

22



Tests of robustness with the tight gradient selection

Tests using different emission first guess

N= 40 10 46 4 44 48 43 65 24 12 34 24

= 6 | «+ Prior flux {5.0 uﬂ:o,mantn:: — Post, flux (5.0 HECU,mmlh::E _]
bt +« Prior flux (4.3 MICOymenth™ | = Past. flux (4.3 MICOymanth

c - «« Prige flux (3.0 MICOymonth™') == Post. flux (3.0 MICO,month™") |
(=] 5 — Post. Nux [ArPoril)

N - AIRPARIF 2008 annual mean -
O 4} Z
U — pu—
=
< 35 ~
wn
o 21
K — u—
-
= 1

Aug Sep Oct Nov Dec Jon Feb Mar Apr May Jun Jul
Tests using AIRPARIF2008 or IER prior total / patterns of emissions

N= 40/0 5/5 20/26 4/0 27/17 39/9 3479 B/SS57 12/12 9/3 20/14 9/15

i ID - . ﬁrior I'Iul;-; aF
I f—— @ =i f - | By =
8 o= 9 S 0 0 o e .
N — e Fosternor Tux (H HY, prior AP)
= 8B |~ = Posterior flux (H™*=H"" prior AR .
o — = Posterior flux (H™ H'“‘, priar AER]) .-
= 7 o
Il
o b6
L
it .
=z S
— 4
w
ok}
o5
5 |
=3

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

PKU-LSCE School 23
Sep 21-25 2015




Tests of robustness with the tight gradient selection

Using ECMWEF ( 15 km) or Meso-NH winds
2km res, urban scheme; from Meteo-France)
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Results

First city CO, emission inversion for one year

Promising results but at the cost of stringent
data selection (to ensure the citywide
representativity of the gradients)

Perspectives

Need more stations to surround the city for a
continuous monitoring of the emissions.

Co-emitted species
Use of satellite data
Improved atmospheric transport
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Eﬁﬁ%’ Micro-scale modelling

ITY

Jussieu CO2
station

altituded F707in

Ground concentration of CO2 near the Jussieu station — MSS model (Micro-SWIFT-SPRAY)
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Inheritage of the AIRCITY system
Full high-resolution 3D model of urban air quality

AIRCITY is a high resolution 3D simulation system of air quality in
a city, allowing both analysis and forecast. The Paris simulation
system covers a 14x11.5 km domain with 3m resolution.

25/703/72013
NOXx

No
background
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Thank you for your attention
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Next objectives

oFor the European CO2 natural flux inversion: use of satellite data; inversion
of anthropogenic emissions (use of co-emitted species, C-isotopes); stronger
links with land carbon models; nesting with national systems

oFoOr the Paris scale CO2 flux inversion: increasing the network, exploiting
urban data (use of urban meteorology, high res simulations), use of co-emitted
species: joint measurement and assimilation of GHG and AG data, C-isotopes,
complementarity with satellite data; increasing the spatial / sectorial resolution

oBetter filtering the information from the CO2 measurements (rejecting less
data) that can be exploited for the inversion of target quantities despite model
errors: better definition of the control and observation vectors through more
complex mathematical operators ?

Model used for the sub-km simulations 13C0O2 measurements at GIF
Example of the nest-down strategy for the nested SWIFT urban meteorological module
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From spatial to spatio-temporal gradients ?

Estimate of monthly budgets of CO2 emissions when using
gradients between downwind concentrations at 14:00 to 16:00 and
upwind concentrations at 12:00 to 14:00 (2-hour lag time)
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 Number of data assimilated approximately divided by 2: results nudge back to prior
(the inversion predicts weak uncertainty reduction)
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The city inversion framework:
sequence of 1 month inversions

g?]r(%?lbv%cm{: Analytical inversion CO2-MP / ICOS hourly
of EE in |lé|:ge > Spatial mapping from city upwind-
& NEE AIRPARIF (FF in 1df) downwind gradients
and C-TESSEL (NEE) 12:00-16:00
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Correl length
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Origin of PMSS code: emergency response
PMSS In inserted into the HPAC system

M533 Urban Dispersion Simulation

0.75815N, 111.8811

Operational resolution in HPAC for MSS Urban subdomain: 3to 5 m
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AIRCITY is the air quality application of
a civil defence born modeling system
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Parallel version of MSS
Examples of CEA applications: Paris case
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3D deposition on ground
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gﬁﬁ-? 1.6 - Micro-scale modelling

ITY

In WP4, micro-scale flow and GHG dispersion modelling are performed in the area surrounding
the static GHG stations (Gif, Gonesse and Jussieu at least). Vector data describing buildings
and emission are created or extracted from existing database. Here is the example of Jussieu
GHG station.

GHG concentrations are computed at a resolution of 3m. The concentration computed near
station will be compared to the 2km-spatial average concentration. Then the spatial
representativeness of the station output could be quantify before being used in the inverse
regional dispersion model.

Without AIRPARIF inventory, ARIA is trying to get data from Ville de Paris.

Rt i -0 I I :
Buildina and traffic emission extracted forla<sieu micro-scale modellinadémain
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