Observed regional carbon budgets imply reduced soil heterotrophic respiration.

Philippe Ciais ^(1,2), Thomas Gasser ⁽¹⁾, Ronny Lauerwald ⁽³⁾, Shushi Peng ^(1,2), Peter A. Raymond ⁽⁴⁾, Yilong Wang ⁽¹⁾, Josep G. Canadell ⁽⁵⁾, Glen P. Peters ⁽⁶⁾, Rob J. Andres ⁽⁷⁾, Jinfeng Chang ^(1,8), Chao Yue ^(1,9), A.Johannes Dolman⁽¹⁰⁾, Vanessa Haverd⁽¹¹⁾, Jens Hartmann⁽¹²⁾, Goulven Laruelle⁽³⁾, AntonyW. King⁽⁷⁾, Yi Liu^(13,14), Sebastiaan Luyssaert ⁽¹⁾, Fabienne Maignan ⁽¹⁾, Prabir K. Patra ⁽¹⁵⁾, Anna Peregon ⁽¹⁾, Pierre Regnier ⁽³⁾, Shilong Piao ^(2,16), Benjamin Poulter ⁽¹⁷⁾, Anatoly Shvidenko⁽¹⁸⁾, Riccardo Valentini⁽¹⁹⁾, Rong Wang⁽¹⁾, Albert I.J.M. van Dijk⁽²⁰⁾, Grégoire Broquet⁽¹⁾, Yi Yin⁽¹⁾, Jakob J. Zscheischler⁽²¹⁾ and Dan Zhu⁽¹⁾.

Carbon sinks offer to humanity a 50% discount on climate change

- The increase of CO₂ is caused by fossil fuel use and land use change
- Fossil fuel emissions soared from 2 GtC yr⁻¹ in the 1960's to 10 GtC yr⁻¹ today
- But the ocean and land carbon sinks absorbed on average ≈50% of emissions

The global carbon budget

• Emissions of fossil fuels are estimated from energy use statistics

- The global ocean sink is constrained by ocean interior measurements
- But the global land sink cannot be quantified by land observations
- A bottom-up estimate of global NEE is still missing

Reccap regions

tan color = no data available

NEE = ΔC + Σ (lateral fluxes)

By convention negative if NEE removes C from the atmosphere and ΔC is negative if C is stored on land

Change in biomass and soil C pools estimated by inventories Change of crop and wood product pools from For Southeast Asia and South Asia, use of VOD satellite data

Data sources

ΔC : RECCAP publications (Biogeosciences)

- •N America : King et al. BG 2015
- •S America : Gloor et al. BG, 2012
- •Africa : Valentini et al. BG 2012
- Europe : Luyssaert et al. BG 2013
- Russia : Dolman et al. BG 2012
- •Australia : Haverd et al. BG 2012
- •East Asia : Piao et al. BG 2013
- •Sout Asia : Patra et al. BG 2012 + Liu et al. 2015
- Southeast Asia Asia : new data from this study

Lateral fluxes

- •DOC, POC, DIC river transport to ocean :
 - Mayorga et al. 2010
 - Hartmann et al. 2009 Separate lithospheric component of DIC transport
- Crop and wood products harvest and trade
 - Peters et al. BG 2012

	RECCAP publication / data source	Forest	Forest	Non-forest	Non-forest	ΔC _{LUC}	Δ wood product C
		ΔC _{biomass}	ΔC _{soil}	ΔC _{biomass}	ΔC _{soil}		
ica	King <i>et al.</i> 2015 (<i>10</i>) in their Table 1	(1)	(1)	(1)	(1)	(1)	(1)
	Luyssaert <i>et al.</i> 2012 (<i>11</i>) in their Table 1 : change in stocks from the sum of terms 9a-j + 10a-b + 11a-b in	(1)	(1)	(1)	(1)	(1)	(1)
	Dolman <i>et al.</i> (13) in their Table 5 corrected *	(1)	(1)	(1)	(1)	(1)	(1)
	No inventory data was reported by Patra <i>et al.</i> (<i>15</i>) so Liu <i>et al.</i> (<i>19</i>) was used	(2) [#]	ND	(2)	ND	(1)	(3)
	Piao <i>et al.</i> 2012 (<i>12</i>)	(1)	(1)	(1)	(1)	(1)	(1)
	New estimate from this study from Liu <i>et al.</i> (no RECCAP publication exists).	(2)	ND	(2)	ND	(2)	(3)
ica	Gloor <i>et al.</i> 2012 (<i>14</i>) in their Table 12	(1) ##	ND	ND	ND	(1)	(3)
	Valentini <i>et al. (17</i>) in their Table 11 completed by Liu <i>et al. (19</i>)	(1) ###	(1)	(2)	(2)	(1) ####	(3)
ia	Haverd <i>et al.</i> (16)	(1)	(1)	(1)	(1)	(1)	(1)

nature climate change

NEE

Data sources - Component of NEE

- Fire emissions
 - GFEDv4 excluding deforestation fires
 - Agricultural residues burning; PKU emission inventory Wang et al. 2013
- LUC net emissions
 - RECCAP regional estimates, independent from Houghton et al.
- River outgassing
 - Raymond et al. 2014 Nature; rivers + lakes
 - Lauerwald et al. 2015 GBC ; only rivers
- Estuaries outgassing
- Grassland biomass intake and oxidation
- Crop and wood products decay
- CH₄, CO and BVOC emissions
 - Bousquet et al. atmospheric inversion
 - Guenther et al. BVOC emission model
- NPP
 - MODIS v5 MOD17A3.005-NPP
 - Excluding land use change grid cells with more than 5% LUC

0.65 PgC yr⁻¹

2.1 PgC yr⁻¹

River CO₂ outgassing fluxes

Ronny Lauerwald^{1,2,3}, Goulven G. Laruelle^{1,4}, Jens Hartmann³, Philippe Ciais⁵, and Pierre A.G. Regnier¹ 13

¹Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium, ²Institut Pierre-Simon Laplace, Paris, France, ³Institute for Geology, University of Hamburg, Hamburg, Germany, ⁴Department of Earth Sciences-Geochemistry, Utrecht University, Utrecht, Netherlands, ⁵LSCE IPSL, Gif Sur Yvette, France

Peter A. Raymond¹, Jens Hartmann²*, Ronny Lauerwald^{2,3}*, Sebastian Sobek⁴*, Cory McDonald⁵, Mark Hoover¹, David Butman^{1,6}, Rob Strieg¹⁶, Emilio Mayorga⁷, Christoph Humborg⁸, Pirkko Kortelainen⁹, Hans Durr¹⁰, Michel Meybeck¹¹, Philippe Citasi¹² & Peter Guth¹³

inland waters

Data synthesis strategy – two sequential steps

1. Collect ΔC independent estimates from inventory approaches from RECCAP publications.

Note that ΔC includes LUC

 Calculate net export fluxes of each region from harmonized global datasets : Peters et al. 2012 for crop and wood products trade Mayorga et al. 2010 and Hartmann et all. 2009 for river export to the ocean Separated DIC from carbonate rocks (Lauerwald et al. pers. com.)

Calculate NEE : NEE = $\Delta C + \sum$ exports

Calculate soil hetetrotrophic respiration (SHR) as a residual :

SHR = NPP - NEE – wood, crop, grass products consumption – fire – LUC - outgassing

- Outgassing of CO₂ from lakes and rivers F_7
- Outgassing of CO₂ from estuaries F_8
- NPP+SHR

NEE

 F_1

 F_3 $F_{4 nat}$

 F_5

 $F_{2\ decay}$

 $F_{4 \ agro}$

 $F_{6\ CH_4}$

 $F_{2\ fuelwood}$

NEE
ΔC (negative means land C storage)
Σ(lateral fluxes)

Components of NEE (positive means a source of C to the atmosphere)

F_1	Net carbon emission to the atmosphere associated with the consumption of crop products
$F_{2\ decay}$	Carbon released to the atmosphere by wood product decay
$F_{2\ fuelwood}$	Carbon released to the atmosphere from wood products burned as fuel
F_3	Carbon emissions to the atmosphere from the digestion of herbage grazed by animals and the decomposition of manure
$F_{4\ nat}$	Total carbon emissions to the atmosphere from all fires except agricultural fires
$F_{4\ agro}$	Total carbon emissions to the atmosphere from agricultural crop residue burning
F_5	Net land use change flux
$F_{6\ CH_4}$	Carbon emitted as CH_4 to the atmosphere by wetlands, termites, rice paddy agriculture sources and absorbed by the soil CH_4
F _{6 CO, BVOC}	carbon from biogenic non methane BVOCs and CO emissions from vegetation
F_7	Outgassing of CO ₂ from lakes and rivers
F_8	Outgassing of CO ₂ from estuaries
NPP+SH	R

NEE
△C (negative means land C storage)
∑(lateral fluxes)

Components of NEE (positive means a source of C to the atmosphere)

NEE ΔC (negative means land C storage) Σ (lateral fluxes)

Components of NEE (positive means a source of C to the atmosphere)

Global bottom-up NEE 2000-2009

B = background land CO_2 uptake during pre-industrial; this C is transported by rivers and outgassed in the ocean

Global bottom-up NEE 2000-2009

Carbon storage efficiency of NPP Excluding land use change

Ratio of annual carbon storage, excluding LUC, to NPP

Soil heterotrophic respiration-to-NPP ratios

Global mean value ranges from 77 to 80% Asian Regions tend to have a lower ratio than other regions because of intensively ecosystem management ? IPCC TAR => 90%

Trendy models ≈ 80% in all regions

Ratio of SHR-to-NPP

Lateral fluxes and future scenarios

A larger fraction of NPP not returned to the soil imply : -Smaller change of soil C per ppm atmospheric CO₂ (β_{soil}) -Smaller change of soil C per ° C warming (γ_{soil}) Compared to ESMs with only NPP, some fire, LUC, HR

Which effect is the strongest ?

A compact Earth System Model (OSCAR) with all biogeochemical feedbacks was emulated to reproduce six CMIP5 ESMs

Two runs – "all NPP to the soil" & "RECCAP NPP to SHR ratio" were performed

		Lateral fluxes included in CMIP5 simulations						
Models	Fires	LUC & wood products	Harvest of crop	Grazing	Non-CO ₂ Biogenic C- fluxes	Rivers		
BCC-CSM-1.1	False	False	False	False	False	False		
CanESM2	False	False	False	False	False	False		
CESM1-C	True	True	False	False	False	False		
HadGEM2-ES	False	True	False	False	False	False		
IPSL-CM5A-LR	True	True	True	False	False	False		
MPI-ESM-LR	True	True	False	False	False	False		
NorESM1-ME	True	True	True	False	False	False		

	Proxy used to assess relative change							
	NPP	Fires	LUC & HWP	Harvest	Grazing	CH4 fluxes	Rivers	
Backcast (1850, 1900, 1950)	CMIP5 (7 models)	CMIP5 (4 models)	CMIP5 (5 models)	LUH data	LUH data	constant	This study (see text)	
Reference (2000-2010)	RECCAP	RECCAP	RECCAP	RECCAP	RECCAP	RECCAP	RECCAP	
Forecast (2050, 2100)	CMIP5 (7 models)	CMIP5 (4 models)	CMIP5 (3 models)	LUH data	LUH data	constant	This study (see text)	
	Global values relative to reference period							
1850	1.00	1.14	0.53	0.14	0.11	1.00	0.85	
2000-2010	1	1	1	1	1	1	1	
2050	1.87	2.05	1.14	1.06	1.05	1.00	1.31	
2100	1.72	1.87	0.75	1.12	1.03	1.00	1.75	

Lateral fluxes and future scenarios

ge

Lateral fluxes and future scenarios

With minus without NEE components not related to soil respiration changes of CO₂ and T between 2100 and 2010

$$\Delta CO_2 = 19 - 77 \text{ ppm}$$

 $\Delta T = 0.1 - 0.4 \circ C$

An important characteristic of RCP8.5 are transformative changes the biomass use for energy purposes from presently traditional (non-commercial) use in the developing world to commercial use in dedicated bio-energy conversion facilities (for power and heat) in the future. Globally the contribution of bioenergy is increasing in RCP8.5 from about 40 EJ in 2000 to more than 150 EJ by 2100. The vast majority of this biomass is harvested in forests, resulting in increased land-requirements for secondary managed forests. While total area of forests is declining in RCP8.5 (Fig. 8), the share of managed forests and harvested areas for biomass are thus increasing considerably. The latter grows from about 17 million ha to more than 26 million ha by 2100. Uncertainties in the interpretation of the underlying

