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What is aerosol?

O An aerosol is a Colloidal System of Solid or Liguid
particles.

O Aerosols include a wide range of species: Sulfate, Nitrate,
Black carbon, Organic matter, Mineral dust and Sea-salt.

O Atmospheric processes of aerosols: Emission, Particle
growth, Transport, Chemical reactions, Sedimentation, Dry
deposition, In-cloud scavenging, Below-cloud scavenging.
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Effects of Aerosols on Ecosystems

(D Aerosols change the physical climate of the oceans or land
ecosystems, and then alter the biogeochemical processes.

@Toxic species (polycyclic aromatic hydrocarbons, heavy
metals, ...) or nutrients (N, P, Fe, Si, Ca, Mg, ...) in aerosols
can influence the primary production of ecosystems.



Effects of Aerosols on Ecosystems
(Mahowald, Science, 2011)

» Aerosols provides nitrogen to land ecosystems, which is
estimated to increase the carbon sink by 0.12 to 0.35 Pg Clyear.

» Phosphorus from deforestation in Amazon fertilizes the local
ecosystems, which is estimated to increase the carbon sink by 0.2
to 0.5 Pg Clyear.

» Due to expansion of deserts, increase of iron emission in dust
can fertilize the ocean biota and enhanced nitrogen fixing, which is
estimated to reduce the atmospheric CO, by ~4 &+ 4 ppm.

However, the nutrients from combustion have not
been considered in current models !!!



Effects of Aerosols on Ecosystems
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Fig. 1. Aerosol direct and indirect (cloud albedo)
radiative forcing estimates (1) compared to the ra-
diative forcing estimates from the indirect effect of
aerosols from biogeochemical cycles.

Mahowald, Science, 2011



Part 1. Atmospheric cycle of phosphorus
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Significant contribution of combustion-related
emissions to the atmospheric phosphorus budget

Rong Wang"?3*, Yves Balkanski'3, Olivier Boucher?, Philippe Ciais3, Josep Pefiuelas®® and Shu Tao??

Atmospheric phosphorus fertilizes plants and contributes to Earth’s biogeochemical phosphorus cycle. However, calculations
of the global budget of atmospheric phosphorus have been unbalanced, with global deposition exceeding estimated emissions

from dust and sea-salt transport, volcanic eruptions, biogenic sources and combustion of fossil fuels, biofuels and biomass,
the latter of which thought to contribute about 5% of total emissions. Here we use measurements of the phosphorus
content of various fuels and estimates of the partitioning of phosphorus during combustion to calculate phosphorus
emissions to the atmosphere from all combustion sources. We estimate combustion-related emissions of 1.8 Tg P yr~', which
represent over 50% of global atmospheric sources of phosphorus. Using these estimates in atmospheric transport model
simulations, we find that the total global emissions of atmospheric phosphorus (3.5 TgPyr~") translate to a depositional
sink of 2.7 TgPyr" over land and 0.8 TgPyr~' over the oceans. The modelled spatial patterns of phosphorus deposition
agree with observations from globally distributed measurement stations, and indicate a near balance of the phosphorus
budget. Our finding suggests that the perturbation of the global phosphorus cycle by anthropogenic emissions is larger than
previously thought.



Previous budget of P estimated in Mahowald et al. (2008)

The estimated emission into the atmosphere

O 1.15 Tg P yr! from dust;

O 0.164 Tg P yr! from primary biogenic particles;
O 0.025 Tg P yr! from biomass burning;

O 0.024 Tg P yr! from fossil fuel burning;

O 0.021 Tg P yr! from biofuel burning;

O 0.006 Tg P yrt from volcanoes;

O 0.0049 Tg P yr! from sea-salts.

As a result, the total source is 1.39 Tg P yr.

However, based on the observed deposition of P, the total atmospheric sink of P:
O 4.5 Tg P yr! from Graham and Duce, 1979;
O 3.7 Tg P yr! from Tippling et al., 2014

Obviously, the budget of P in the atmosphere is not balanced!



New method to estimate the emissions of P

Previous studies estimate the emissions from data on the P content of fine
particulate matter (PM10), P content of PM10, and PM10 emission factors.

Our estimate is based on the P content of fuel and on data showing the partitioning
of P during combustion into that released to the atmosphere and that retained in
combustion residues

4

E=a-b-c-(1-1)-D J,-| DA -1-R,,)
x=1 y=1

X represents a given particle size

y represents a specific control device (cyclone, scrubber, ESP, ...)

a is the consumption of fuel

b is the rate of combustion

c is the content of P in fuel

f is the fraction of P retained in the residue ash

J, is the fraction of P emitted in patrticle size x

A, is the fraction of a given type of control device

R, Is the removing efficiency of the control device for particles in the size



A new budget of P is provided in our new study (Wang et al., Nature Geoscience, 2015)

Fluxes and the 90% CI, Tg Pyr!

Sources
Combustion (present study) 2 1.8(0.5t04.4)
Anthropogenic (including deforestation fires) 1.1(0.3t03.1)
Natural 0.7 (0.2 t0 1.3)
Mineral dust input ° 0.93 (0.23t0 2.1)
Primary biogenic aerosol particles ¢ 0.58 (0.16 t0 1.0)
Volcanoes ¢ 0.006 (0.003 to 0.009)
Sea salt ® 0.16 (0.0049 t0 0.33)
Phosphine from marshes & paddies f 0.00020 (0.000038 to 0.00036)
Total sources 3.5(0.9t07.8)
Sinks
Total sinks from the model 3.5(0.9t07.8)
over land 2.7(0.7t06.2)
over oceans 0.8 (0.2 t0 1.6)
From Graham and Duce, 1979 (ref. 10) 4.5

From Tippling et al., 2014 (ref. 13) 3.7




Modeling of Phosphorus in the atmosphere

A global atmospheric general circulation model LMDz-OR-INCA at a
horizontal resolution of 0.94° latitude by 1.28° longitude with 39 vertical
layers:

v P emitted from combustion sources were modelled in one fine mode (size =
0.34 um) and two coarse modes (size = 2.5 um and 10.0 um)

v P emitted from biogenic sources (small pollens, etc) and volcanoes were
modelled in one coarse mode (size =5 um)

v P emitted from mineral sources were modelled as dust (size = 2.5 um)

v P emitted from sea-salt were modelled as sea-salt.



Atmospheric deposition of phosphorus

b, Observed P dep., mg m? yr'

a, Modelled P dep., mg m” yr’!
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Model Validation with / without combustion sources
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Part 2: Atmospheric cycle of iron (Fe)



Iron (Fe) is the most important element for
ocean biogeochemistry
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Methods: Emission of Iron in combustion

E=a-b-c-(1- f)Z‘]x iAy.(l_Rx’y)

x=1

X represents a given particle size

y represents a specific control device (cyclone, scrubber, ESP, ...)

a is the consumption of fuel

b is the combustion rate

c is content of Fe in fuel

f is the fraction of Fe retained in the residue ash

J, 1s the fraction of Fe emitted in particle size x

A, Is the fraction of a given type of control device

R, Is the removing efficiency of the control device for particles in the size



Methods: Atmospheric Transport of Fe

A global aerosol model LMDz-INCA at a horizontal resolution of 0.94° latitude
by 1.28° longitude and 39 vertical layers from the surface to 4.3Pa.

The model couples a General Circulation Model LMDZ (Hourdin et al., 2006)
with a aerosol module INCA (Balkanski et al., 2004, 2007).

Fe emitted from combustion sources, three size bins was considered:
O Fein PM, as a fine mode (MMD = 0.34 um, o = 1.59);

O Fein PM,,, as a coarse mode (MMD = 3.4 ym, o = 2.0);

O Fein PM,,, as a coarse mode (MMD = 34 ym, o = 2.0).

Fe emitted from dust sources:

O the content of Fe in dust was estimated based on a lastest soil mineralogy
database (Journet et al., 2014).

O the transport of Fe is treated the same as dust (MMD = 2.5 ym, o = 2.0).



Results - Emission Estimates:

Table 1. Comparison of Fe emissions m our work and previous studies (“B717 for Bertine and Goldberg,

1971; “Luo08” for Luo etal., 2008; and “Ttol3” for Ito, 2013). Unit: Tg yrl«

A Years+ Fossil fuels+ Biomass+ Dust+
B71+~ 1967+ 1.4 (all sizes) a s
Luo08+< 1996+ 0.56 (PMy_1o)+ 0.86 (PM;.10)+ 55 (using a Fe content of 3_5%)+
0.10 (PM;)e 0.21 (PM;)e
Itol3~ 2001+ 0.44 (PM; i)+ 0.92 (PM;.10+ 74 (using a Fe content of 3.5%)+
0.07 (PM;)e 0.23 (PM;)e
Our works 1967+ 232 (PMa a #
0.64 (PMy_ o)
0.017 (PM;)e
o 1996« 1.14 (PMpi)e  0.31 (PMpgge
0.036 (PM;)e 0.012 (PM;)e
o 2001« 0.83 (PMygl  0.31(PMpgle ¢
0.035 (PMpg)e  0.012 (PMy)e
2007+ o . 35 (using a Fe content of 3.5%)+
2007# o a 38 (using the mineralogy data)+

+.



Results — Modelled Surface Concentrations:
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Results — VValidation of modelled Surface Concentrations:
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Results — Latitudinal Distribution of Fe over the Atlantic Ocean
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Results — Comparison to sites dominated by combustion sources
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Results — Modelled Fe deposition rate:
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Results — Validation of modelled Fe deposition rates
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Part 3: Global ocean model



Ocean phytoplankton might be decreasing in
the last century
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Field and model simulations suggest a decline in marine
phytoplankton and the net primary production (NPP), because global
warming has led to the increasing stratification of water columns and
reduction of the supply of nutrients from subsurface waters (IPCC,

2013).

Our question: can anthropogenic
aerosols provide additional nutrients
and change the temporal trend of
marine phytoplankton?




Historical emissions of reactive nitrogen (Nr),
phosphate(PO4) and soluble iron (sFe)
- Reconstructed in our study
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Oceanic deposition of dissolved inorganic nitrogen
(DIN), phosphate (PO4) and soluble iron (sFe)
- Simulated in our study
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Methods: Global Carbon-Climate Coupled Ocean Model NEMO-PISCES

A state-of-the-art carbon-climate coupled ocean model NEMO-PISCES
(version 2) was used to simulate the fate of nutrients (N, P, Fe and silicon) and
the carbon cycle in global oceans. The model was run with the ocean dynamics
simulated by an ocean physical model ORCA2-LIM (version 3.2), which
couples an oceanic general circulation model OPA9 (Ocean PArallelise) with a
sea-ice model LIM2 (Louvain-la-Neuve). The horizontal resolution of the model
iIs2° X2° cos (latitude), with a zoomed resolution of 0.5° X0.5° over the
equatorial oceans. There are 30 vertical layers from the ocean surface down to
a depth of 5000 m, varying from a vertical resolution of 10 m at the surface to
one of 500 m at the bottom. External sources of nutrients include: atmospheric
deposition, rivers, exchange between the sediments and the water, exchange
between the sea ice and the water, and hydrothermal vents.



Two Experiments:
Without anthropogenic aerosol deposition (CTL):

v" We used the standard model configuration as done in Bopp et al., 2013.
v The deposition of N, P and Fe was fixed at the 1850 levels.

With anthropogenic aerosol deposition (DEP):

v" We used the standard model configuration as done in Bopp et al., 2013.
v The monthly deposition of N, P and Fe simulated by our 3-D atmospheric
transport model (LMDZ-ORCHIDEE-INCA) from 1850 to 2010 was prescribed

to NEMO-PISCES.



Impact of anthropogenic aerosols on ocean
nutrient concentrations as difference between
CTL and DEP

dissolved Fe

dissolved N

Latitude

605 1l— r r r r — r r r r r T r
50€E 150€ 110w 10W 50€E 150€ 110w 10w
RD - T T T T T T [ T T T T T T oo Contour lines
30% 60% 90% —RD =#0% ---- RD = 430%

-30% 0

-90% -60%

Negative impact on P is due to
increased demand of P by
enhanced phytoplankton growth.

60— . . . . ——
50E 150 fm‘w 10%W

dissolved P (negative)



Impact of anthropogenic aerosols on nutrient

limitation to phytoplankton: the high-limitation

area (limitation factor < 0.05) is shrinking due
to anthropogenic aerosols

Without anthropogenic aerosols With anthropogenic aerosols
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Impact of anthropogenic aerosols on oceanic
chlorophyll concentrations

Without anthropogenic aerosols With anthropogenic aerosols
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NPP (Pg C yr)

Impact of anthropogenic aerosols on the
sensitivity of marine NPP to sea-surface
temperature (SST) from 1948 to 2007
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Part 4: Global land dynamic model (1 will
present these results in the next year)



Thank for your attention!!!



