
Basic UNIX documentation (tutorials for beginners)

JYP – LSCE – June 2010

Everything on one page, but slightly out of date

http://www.rain.org/~mkummel/unix.html

 Updated, slightly cleaned and converted to pdf by JYP: TB_Unix_Cheat_Sheet_Corrected_JYP.pdf

Nice tutorial, but on several pages (download the zip file for offline use)

http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

 Converted to pdf by JYP: UNIX_Tutorial_for_Beginners.pdf

http://www.rain.org/~mkummel/unix.html�
http://www.ee.surrey.ac.uk/Teaching/Unix/index.html�

Treebeard's Unix Cheat Sheet

Marc Kummel / mkummel@rain.org

Heavily edited by JYP – LSCE – June 2010

Help on any Unix command

man {command} Type man ls to read the manual for the ls command.

List a directory

ls {path} It's ok to combine attributes, eg ls -laF gets a long listing of all files with

types.

ls {path_1}
{path_2} List both {path_1} and {path_2}.

ls -l {path} Long listing, with date, size and permisions.

ls -a {path} Show all files, including important .dot files that don't otherwise show.

ls -F {path} Show type of each file. "/" = directory, "*" = executable.

ls -R {path} Recursive listing, with all subdirs.

ls {path} >
{filename} Redirect directory to a file.

ls {path} | more Show listing one screen at a time.

Change to directory

cd {dirname} There must be a space between.

cd ~ Go back to home directory, useful if you're lost.

cd .. Go back one directory.

Make a new directory

mkdir {dirname}

Remove a directory

rmdir {dirname} Only works if {dirname} is empty.

rm -r {dirname} Remove all files and subdirs. Careful!

Print working directory

pwd Show where you are as full path. Useful if you're lost or exploring.

Copy a file or directory

cp {file1} {file2}

cp -r {dir1}
{dir2} Recursive, copy directory and all subdirs.

cat {newfile} >>
{oldfile} Append newfile to end of oldfile.

Move (or rename) a file

mv {oldfile}
{newfile} Moving a file and renaming it are the same thing.

mv {oldname}
{newname}

Delete a file

rm {filespec} ? and * wildcards work like DOS should. "?" is any character; "*" is any

string of characters.

mailto:mkummel@rain.org�

ls {filespec}
rm {filespec}

Good strategy: first list a group to make sure it's what's you think...
...then delete it all at once.

View a text file

more {filename} View file one screen at a time.

less {filename} Like more, with extra features.

cat {filename} View file, but it scrolls.

cat {filename} |
more View file one screen at a time.

Edit/Create a text file
emacs, vi, gedit, kate, …
Compare two files

diff {file1}
{file2} Show the differences.

sdiff {file1}
{file2} Show files side by side.

Other text commands

grep '{pattern}'
{file} Find regular expression in file.

sort {file1} >
{file2} Sort file1 and save as file2.

wc {file} Count words in file.

Find files on system

find {filespec} Works with wildcards.

Make an Alias

alias {name}
'{command}' Put the command in 'single quotes'. More useful in your .cshrc file.

Wildcards and Shortcuts

* Match any string of characters, eg page* gets page1, page10, and page.txt.

? Match any single character, eg page? gets page1 and page2, but not page10.

[...] Match any characters in a range, eg page[1-3] gets page1, page2, and page3.

~ Short for your home directory, eg cd ~ will take you home, and rm -r ~ will

destroy it.

. The current directory.

.. One directory up the tree, eg ls ...

Pipes and Redirection (You pipe a command to another command, and redirect it to a file.)

{command} > {file} Redirect output to a file, eg ls > list.txt writes directory to file.

{command} >>
{file}

Append output to an existing file, eg cat update >> archive adds update to
end of archive.

{command} < {file} Get input from a file, eg sort < file.txt

{command} <
{file1} > {file2}

Get input from file1, and write to file2, eg sort < old.txt > new.txt sorts
old.txt and saves as new.txt.

{command} |
{command}

Pipe one command to another, eg ls | more gets directory and sends it to
more to show it one page at a time.

Permissions, important and tricky!

 Unix permissions concern who can read a file or directory, write to it, and execute it. Permissions

are granted or withheld with a magic 3-digit number. The three digits correspond to the owner (you);
the group (?); and the world (everyone else).

Think of each digit as a sum:

 execute permission =1

 write permission = 2

 write and execute (1+2) = 3

 read permission = 4

 read and execute (4+1) = 5

 read and write (4+2) = 6

 read, write and execute (4+2+1) = 7

Add the number value of the permissions you want to grant each group to make a three digit number,
one digit each for the owner, the group, and the world. Here are some useful combinations. Try to
figure them out!

chmod 600
{filespec} You can read and write; the world can't. Good for files.

chmod 700
{filespec} You can read, write, and execute; the world can't. Good for scripts.

chmod 644
{filespec} You can read and write; the world can only read. Good for web pages.

chmod 755
{filespec}

You can read, write, and execute; the world can read and execute. Good for
programs you want to share, and your public_html directory.

Permissions, another way

You can also change file permissions with letters:

 u = user (yourself) g = group a = everyone

 r = read w = write x = execute

chmod u+rw
{filespec} Give yourself read and write permission

chmod u+x
{filespec} Give yourself execute permission.

chmod a+rw
{filespec} Give read and write permission to everyone.

System info

date Show date and time.

df Check system disk capacity.

du Check your disk usage and show bytes in each directory.

quota -v Check your total disk use.

Unix Directory Format

Long listings (ls -l) have this format:

 - file
 d directory, * executable
 ^ symbolic links (?) file size (bytes) file name / directory
 ^ ^ ^ ^ ^
 drwxr-xr-x 11 mkummel 2560 Mar 7 23:25 public_html/
 -rw-r--r-- 1 mkummel 10297 Mar 8 23:42 index.html
 ^

 ^^^ user permission (rwx) date and time last modified
 ^^^ group permission (rwx)
 ^^^ world permission (rwx)

How to Make an Alias
An alias lets you type something simple and do something complex. It's a shorthand for a
command. If you want to type "dir" instead of "ls -l" then type alias dir 'ls -l'. The single quotes
tell Unix that the enclosed text is one command.

Aliases are more useful if they're permanent so you don't have to think about them. You can do
this by adding the alias to your .cshrc file so they're automatically loaded when you start.

 # enter your aliases here in the form:
 # alias this means this

 alias h history
 alias m more
 alias q quota -v
 alias ls ls -F

Dotfiles (aka Hidden Files)
Dotfile names begin with a "." These files and directories don't show up when you list a directory
unless you use the -a option, so they are also called hidden files. Type ls -la in your home
directory to see what you have.

Some of these dotfiles are crucial. They initialize your shell and the programs you use. These are
all text files that can be edited, but change them at your peril. Make backups first!

 .cshrc my C-shell startup info, important!
 .history list of past commands.
.login login init, important!
 .profile Korn shell startup info, important!

UNIX Tutorial for Beginners

file:///E|/Users/jypeter/DocUnix/unixtut/index.html[22/06/2010 10:05:05]

UNIX Tutorial for Beginners

Typographical Conventions

Introduction to The UNIX operating system

Tutorial One

Listing files and directories
Making Directories
Changing to a different Directory
The directories . and ..
Pathnames
More about home directories and pathnames

Tutorial Two

Copying Files
Moving Files
Removing Files and directories
Displaying the contents of a file on the screen
Searching the contents of a file

Tutorial Three

Redirection
Redirecting the Output
Redirecting the Input
Pipes

Tutorial Four

Wildcards
Filename Conventions
Getting Help

Tutorial Five

File system security (access rights)
Changing access rights
Processes and Jobs
Listing suspended and background processes
Killing a process

Tutorial Six

Other Useful UNIX commands

Tutorial Seven

Compiling UNIX software packages
Download source code
Extracting source code
Configuring and creating the Makefile

UNIX Tutorial for Beginners

file:///E|/Users/jypeter/DocUnix/unixtut/index.html[22/06/2010 10:05:05]

Building the package
Running the software
Stripping unnecessary code

Tutorial Eight

UNIX variables
Environment variables
Shell variables
Using and setting variables

Downloads

This tutorial is available for download in the following formats -

Unix tar.gz file
Windows zip file

UNIX Help for Users

For more help with UNIX, try this guide from the University of Edinburgh

UNIX Frequently Asked Questions (FAQs)

These seven articles contain the answers to some Frequently Asked Questions often seen in
comp.unix.questions and comp.unix.shell.

History of UNIX

UNIX was originally developed at Bell Laboratories as a private research project by a small
group of people. Read all about the history of its creation.

M.Stonebank@surrey.ac.uk, 19 October 2001

This tutorial is licensed under a Creative Commons License.

http://www.ee.surrey.ac.uk/Teaching/Unix/arc/unixtut.tar.gz
http://www.ee.surrey.ac.uk/Teaching/Unix/arc/unixtut.zip
file:///Docs/Unixhelp/TOP_.html
http://www.faqs.org/faqs/unix-faq/faq/part1/preamble.html
http://www.bell-labs.com/history/unix/
http://www.ee.surrey.ac.uk/Personal/M.Stonebank/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

UNIX Tutorial - Introduction

file:///E|/Users/jypeter/DocUnix/unixtut/unixintro.html[22/06/2010 10:05:06]

UNIX Introduction

This session concerns UNIX, which is a common operating system. By operating system, we mean
the suite of programs which make the computer work. UNIX is used by the workstations and multi-
user servers within the school.

On X terminals and the workstations, X Windows provide a graphical interface between the user
and UNIX. However, knowledge of UNIX is required for operations which aren't covered by a
graphical program, or for when there is no X windows system, for example, in a telnet session.

The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to programs
and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user types rm
myfile (which has the effect of removing the file myfile). The shell searches the filestore for the
file containing the program rm, and then requests the kernel, through system calls, to execute the
program rm on myfile. When the process rm myfile has finished running, the shell then returns the
UNIX prompt % to the user, indicating that it is waiting for further commands.

The shell

The shell acts as an interface between the user and the kernel. When a user logs in, the login
program checks the username and password, and then starts another program called the shell.
The shell is a command line interpreter (CLI). It interprets the commands the user types in and
arranges for them to be carried out. The commands are themselves programs: when they
terminate, the shell gives the user another prompt (% on our systems).

The adept user can customise his/her own shell, and users can use different shells on the same
machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory and
pressing the [Tab] key, the tcsh shell will complete the rest of the name automatically. If the shell
finds more than one name beginning with those letters you have typed, it will beep, prompting you
to type a few more letters before pressing the tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to repeat a
command, use the cursor keys to scroll up and down the list or type history for a list of previous
commands.

Files and processes

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

UNIX Tutorial - Introduction

file:///E|/Users/jypeter/DocUnix/unixtut/unixintro.html[22/06/2010 10:05:06]

A file is a collection of data. They are created by users using text editors, running compilers etc.

Examples of files:

a document (report, essay etc.)
the text of a program written in some high-level programming language
instructions comprehensible directly to the machine and incomprehensible to a casual user, for
example, a collection of binary digits (an executable or binary file);
a directory, containing information about its contents, which may be a mixture of other directories
(subdirectories) and ordinary files.

The Directory Structure

All the files are grouped together in the directory structure. The file-system is arranged in a
hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally called root.

In the diagram above, we see that the directory ee51ab contains the subdirectory unixstuff and a
file proj.txt

Starting an Xterminal session

To start an Xterm session, click on the Unix Terminal icon on your desktop, or from the drop-down
menus

UNIX Tutorial - Introduction

file:///E|/Users/jypeter/DocUnix/unixtut/unixintro.html[22/06/2010 10:05:06]

An Xterminal window will appear with a Unix prompt, waiting for you to start entering commands.

M.Stonebank@surrey.ac.uk, © 9th October 2000

UNIX Tutorial

file:///E|/Users/jypeter/DocUnix/unixtut/unix0.html[22/06/2010 10:05:06]

UNIX Tutorial

Typographical conventions

In what follows, we shall use the following typographical conventions:

Characters written in bold typewriter font are commands to be typed into the computer as
they stand.
Characters written in italic typewriter font indicate non-specific file or directory names.
Words inserted within square brackets [Ctrl] indicate keys to be pressed.

So, for example,

% ls anydirectory [Enter]

means "at the UNIX prompt %, type ls followed by the name of some directory, then press the key
marked Enter"

Don't forget to press the [Enter] key: commands are not sent to the computer until this is done.

Note: UNIX is case-sensitve, so LS is not the same as ls.

The same applies to filenames, so myfile.txt, MyFile.txt and MYFILE.TXT are
three seperate files. Beware if copying files to a PC, since DOS and Windows do
not make this distinction.

M.Stonebank@surrey.ac.uk, © 1 November, 2002

UNIX Tutorial One

file:///E|/Users/jypeter/DocUnix/unixtut/unix1.html[22/06/2010 10:05:06]

UNIX Tutorial One

1.1 Listing files and directories

ls (list)

When you first login, your current working directory is your home directory. Your home directory
has the same name as your user-name, for example, ee91ab, and it is where your personal files
and subdirectories are saved.

To find out what is in your home directory, type

% ls (short for list)

The ls command lists the contents of your current working directory.

There may be no files visible in your home directory, in which case, the UNIX prompt will be
returned. Alternatively, there may already be some files inserted by the System Administrator when
your account was created.

ls does not, in fact, cause all the files in your home directory to be listed, but only those ones
whose name does not begin with a dot (.) Files beginning with a dot (.) are known as hidden files
and usually contain important program configuration information. They are hidden because you
should not change them unless you are very familiar with UNIX!!!

To list all files in your home directory including those whose names begin with a dot, type

% ls -a

ls is an example of a command which can take options: -a is an example of an option. The options
change the behaviour of the command. There are online manual pages that tell you which options a
particular command can take, and how each option modifies the behaviour of the command. (See
later in this tutorial)

1.2 Making Directories

mkdir (make directory)

We will now make a subdirectory in your home directory to hold the files you will be creating and
using in the course of this tutorial. To make a subdirectory called unixstuff in your current working
directory type

% mkdir unixstuff

To see the directory you have just created, type

% ls

1.3 Changing to a different directory

cd (change directory)

UNIX Tutorial One

file:///E|/Users/jypeter/DocUnix/unixtut/unix1.html[22/06/2010 10:05:06]

The command cd directory means change the current working directory to 'directory'. The current
working directory may be thought of as the directory you are in, i.e. your current position in the file-
system tree.

To change to the directory you have just made, type

% cd unixstuff

Type ls to see the contents (which should be empty)

Exercise 1a

Make another directory inside the unixstuff directory called backups

1.4 The directories . and ..

Still in the unixstuff directory, type

% ls -a

As you can see, in the unixstuff directory (and in all other directories), there are two special
directories called (.) and (..)

In UNIX, (.) means the current directory, so typing

% cd .

NOTE: there is a space between cd and the dot

means stay where you are (the unixstuff directory).

This may not seem very useful at first, but using (.) as the name of the current directory will save a
lot of typing, as we shall see later in the tutorial.

(..) means the parent of the current directory, so typing

% cd ..

will take you one directory up the hierarchy (back to your home directory). Try it now.

Note: typing cd with no argument always returns you to your home directory. This is very useful if
you are lost in the file system.

1.5 Pathnames

pwd (print working directory)

Pathnames enable you to work out where you are in relation to the whole file-system. For example,
to find out the absolute pathname of your home-directory, type cd to get back to your home-
directory and then type

% pwd

The full pathname will look something like this -

UNIX Tutorial One

file:///E|/Users/jypeter/DocUnix/unixtut/unix1.html[22/06/2010 10:05:06]

/a/fservb/fservb/fservb22/eebeng99/ee91ab

which means that ee91ab (your home directory) is in the directory eebeng99 (the group
directory),which is located on the fservb file-server.

Note:

/a/fservb/fservb/fservb22/eebeng99/ee91ab

can be shortened to

/user/eebeng99/ee91ab

Exercise 1b

Use the commands ls, pwd and cd to explore the file system.

(Remember, if you get lost, type cd by itself to return to your home-directory)

1.6 More about home directories and pathnames

Understanding pathnames

First type cd to get back to your home-directory, then type

% ls unixstuff

to list the conents of your unixstuff directory.

Now type

% ls backups

You will get a message like this -

backups: No such file or directory

The reason is, backups is not in your current working directory. To use a command on a file (or
directory) not in the current working directory (the directory you are currently in), you must either cd
to the correct directory, or specify its full pathname. To list the contents of your backups directory,
you must type

% ls unixstuff/backups

~ (your home directory)

Home directories can also be referred to by the tilde ~ character. It can be used to specify paths
starting at your home directory. So typing

% ls ~/unixstuff

will list the contents of your unixstuff directory, no matter where you currently are in the file system.

What do you think

UNIX Tutorial One

file:///E|/Users/jypeter/DocUnix/unixtut/unix1.html[22/06/2010 10:05:06]

% ls ~

would list?

What do you think

% ls ~/..

would list?

Summary

ls list files and directories

ls -a list all files and directories

mkdir make a directory

cd directory change to named directory

cd change to home-directory

cd ~ change to home-directory

cd .. change to parent directory

pwd display the path of the current directory

M.Stonebank@surrey.ac.uk, © 9th October 2000

UNIX Tutorial Two

file:///E|/Users/jypeter/DocUnix/unixtut/unix2.html[22/06/2010 10:05:06]

UNIX Tutorial Two

2.1 Copying Files

cp (copy)

cp file1 file2 is the command which makes a copy of file1 in the current working directory and
calls it file2

What we are going to do now, is to take a file stored in an open access area of the file system, and
use the cp command to copy it to your unixstuff directory.

First, cd to your unixstuff directory.

% cd ~/unixstuff

Then at the UNIX prompt, type,

% cp /vol/examples/tutorial/science.txt .

(Note: Don't forget the dot (.) at the end. Remember, in UNIX, the dot means the current directory.)

The above command means copy the file science.txt to the current directory, keeping the name
the same.

(Note: The directory /vol/examples/tutorial/ is an area to which everyone in the department has
read and copy access. If you are from outside the University, you can grab a copy of the file here.
Use 'File/Save As..' from the menu bar to save it into your unixstuff directory.)

Exercise 2a

Create a backup of your science.txt file by copying it to a file called science.bak

2.2 Moving files

mv (move)

mv file1 file2 moves (or renames) file1 to file2

To move a file from one place to another, use the mv command. This has the effect of moving rather
than copying the file, so you end up with only one file rather than two.

It can also be used to rename a file, by moving the file to the same directory, but giving it a different
name.

We are now going to move the file science.bak to your backup directory.

First, change directories to your unixstuff directory (can you remember how?). Then, inside the
unixstuff directory, type

% mv science.bak backups/.

file:///E|/Users/jypeter/DocUnix/unixtut/science.txt

UNIX Tutorial Two

file:///E|/Users/jypeter/DocUnix/unixtut/unix2.html[22/06/2010 10:05:06]

Type ls and ls backups to see if it has worked.

2.3 Removing files and directories

rm (remove), rmdir (remove directory)

To delete (remove) a file, use the rm command. As an example, we are going to create a copy of
the science.txt file then delete it.

Inside your unixstuff directory, type

% cp science.txt tempfile.txt
% ls (to check if it has created the file)
% rm tempfile.txt
% ls (to check if it has deleted the file)

You can use the rmdir command to remove a directory (make sure it is empty first). Try to remove
the backups directory. You will not be able to since UNIX will not let you remove a non-empty
directory.

Exercise 2b

Create a directory called tempstuff using mkdir , then remove it using the rmdir command.

2.4 Displaying the contents of a file on the screen

clear (clear screen)

Before you start the next section, you may like to clear the terminal window of the previous
commands so the output of the following commands can be clearly understood.

At the prompt, type

% clear

This will clear all text and leave you with the % prompt at the top of the window.

cat (concatenate)

The command cat can be used to display the contents of a file on the screen. Type:

% cat science.txt

As you can see, the file is longer than than the size of the window, so it scrolls past making it
unreadable.

less

The command less writes the contents of a file onto the screen a page at a time. Type

% less science.txt

UNIX Tutorial Two

file:///E|/Users/jypeter/DocUnix/unixtut/unix2.html[22/06/2010 10:05:06]

Press the [space-bar] if you want to see another page, type [q] if you want to quit reading. As you
can see, less is used in preference to cat for long files.

head

The head command writes the first ten lines of a file to the screen.

First clear the screen then type

% head science.txt

Then type

% head -5 science.txt

What difference did the -5 do to the head command?

tail

The tail command writes the last ten lines of a file to the screen.

Clear the screen and type

% tail science.txt

How can you view the last 15 lines of the file?

2.5 Searching the contents of a file

Simple searching using less

Using less, you can search though a text file for a keyword (pattern). For example, to search
through science.txt for the word 'science', type

% less science.txt

then, still in less (i.e. don't press [q] to quit), type a forward slash [/] followed by the word to
search

/science

As you can see, less finds and highlights the keyword. Type [n] to search for the next occurrence
of the word.

grep (don't ask why it is called grep)

grep is one of many standard UNIX utilities. It searches files for specified words or patterns. First
clear the screen, then type

% grep science science.txt

As you can see, grep has printed out each line containg the word science.

UNIX Tutorial Two

file:///E|/Users/jypeter/DocUnix/unixtut/unix2.html[22/06/2010 10:05:06]

Or has it????

Try typing

% grep Science science.txt

The grep command is case sensitive; it distinguishes between Science and science.

To ignore upper/lower case distinctions, use the -i option, i.e. type

% grep -i science science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol).
For example to search for spinning top, type

% grep -i 'spinning top' science.txt

Some of the other options of grep are:

-v display those lines that do NOT match
-n precede each maching line with the line number
-c print only the total count of matched lines

Try some of them and see the different results. Don't forget, you can use more than one option at a
time, for example, the number of lines without the words science or Science is

% grep -ivc science science.txt

wc (word count)

A handy little utility is the wc command, short for word count. To do a word count on science.txt,
type

% wc -w science.txt

To find out how many lines the file has, type

% wc -l science.txt

Summary

cp file1 file2 copy file1 and call it file2
mv file1 file2 move or rename file1 to file2
rm file remove a file
rmdir directory remove a directory
cat file display a file
more file display a file a page at a time
head file display the first few lines of a file
tail file display the last few lines of a file
grep 'keyword' file search a file for keywords
wc file count number of lines/words/characters in file

UNIX Tutorial Two

file:///E|/Users/jypeter/DocUnix/unixtut/unix2.html[22/06/2010 10:05:06]

M.Stonebank@surrey.ac.uk, © 9th October 2000

UNIX Tutorial Three

file:///E|/Users/jypeter/DocUnix/unixtut/unix3.html[22/06/2010 10:05:06]

UNIX Tutorial Three

3.1 Redirection

Most processes initiated by UNIX commands write to the standard output (that is, they write to the
terminal screen), and many take their input from the standard input (that is, they read it from the
keyboard). There is also the standard error, where processes write their error messages, by
default, to the terminal screen.

We have already seen one use of the cat command to write the contents of a file to the screen.

Now type cat without specifing a file to read

% cat

Then type a few words on the keyboard and press the [Return] key.

Finally hold the [Ctrl] key down and press [d] (written as ^D for short) to end the input.

What has happened?

If you run the cat command without specifing a file to read, it reads the standard input (the
keyboard), and on receiving the'end of file' (^D), copies it to the standard output (the screen).

In UNIX, we can redirect both the input and the output of commands.

3.2 Redirecting the Output

We use the > symbol to redirect the output of a command. For example, to create a file called list1
containing a list of fruit, type

% cat > list1

Then type in the names of some fruit. Press [Return] after each one.

pear
banana
apple
^D (Control D to stop)

What happens is the cat command reads the standard input (the keyboard) and the > redirects the
output, which normally goes to the screen, into a file called list1

To read the contents of the file, type

% cat list1

Exercise 3a

Using the above method, create another file called list2 containing the following fruit: orange,
plum, mango, grapefruit. Read the contents of list2

The form >> appends standard output to a file. So to add more items to the file list1, type

% cat >> list1

Then type in the names of more fruit

UNIX Tutorial Three

file:///E|/Users/jypeter/DocUnix/unixtut/unix3.html[22/06/2010 10:05:06]

peach
grape
orange
^D (Control D to stop)

To read the contents of the file, type

% cat list1

You should now have two files. One contains six fruit, the other contains four fruit. We will now use
the cat command to join (concatenate) list1 and list2 into a new file called biglist. Type

% cat list1 list2 > biglist

What this is doing is reading the contents of list1 and list2 in turn, then outputing the text to the
file biglist

To read the contents of the new file, type

% cat biglist

3.3 Redirecting the Input

We use the < symbol to redirect the input of a command.

The command sort alphabetically or numerically sorts a list. Type

% sort

Then type in the names of some vegetables. Press [Return] after each one.

carrot
beetroot
artichoke
^D (control d to stop)

The output will be

artichoke
beetroot
carrot

Using < you can redirect the input to come from a file rather than the keyboard. For example, to sort
the list of fruit, type

% sort < biglist

and the sorted list will be output to the screen.

To output the sorted list to a file, type,

% sort < biglist > slist

Use cat to read the contents of the file slist

3.4 Pipes

To see who is on the system with you, type

% who

One method to get a sorted list of names is to type,

UNIX Tutorial Three

file:///E|/Users/jypeter/DocUnix/unixtut/unix3.html[22/06/2010 10:05:06]

% who > names.txt
% sort < names.txt

This is a bit slow and you have to remember to remove the temporary file called names when you
have finished. What you really want to do is connect the output of the who command directly to the
input of the sort command. This is exactly what pipes do. The symbol for a pipe is the vertical bar |

For example, typing

% who | sort

will give the same result as above, but quicker and cleaner.

To find out how many users are logged on, type

% who | wc -l

Exercise 3b

a2ps -Phockney textfile is the command to print a postscript file to the printer hockney.

Using pipes, print all lines of list1 and list2 containing the letter 'p', sort the result, and print to the
printer hockney.

Answer available here

Summary

command > file redirect standard output to a file
command >> file append standard output to a file
command < file redirect standard input from a file
command1 | command2 pipe the output of command1 to the input of command2
cat file1 file2 > file0 concatenate file1 and file2 to file0
sort sort data
who list users currently logged in
a2ps -Pprinter textfile print text file to named printer
lpr -Pprinter psfile print postscript file to named printer

M.Stonebank@surrey.ac.uk, © 9th October 2000

file:///E|/Users/jypeter/DocUnix/unixtut/pipeanswer.html

UNIX Tutorial Four

file:///E|/Users/jypeter/DocUnix/unixtut/unix4.html[22/06/2010 10:05:06]

UNIX Tutorial Four

4.1 Wildcards

The characters * and ?

The character * is called a wildcard, and will match against none or more character(s) in a file (or
directory) name. For example, in your unixstuff directory, type

% ls list*

This will list all files in the current directory starting with list....

Try typing

% ls *list

This will list all files in the current directory ending withlist

The character ? will match exactly one character.
So ls ?ouse will match files like house and mouse, but not grouse.
Try typing

% ls ?list

4.2 Filename conventions

We should note here that a directory is merely a special type of file. So the rules and conventions
for naming files apply also to directories.

In naming files, characters with special meanings such as / * & % , should be avoided. Also, avoid
using spaces within names. The safest way to name a file is to use only alphanumeric characters,
that is, letters and numbers, together with _ (underscore) and . (dot).

File names conventionally start with a lower-case letter, and may end with a dot followed by a
group of letters indicating the contents of the file. For example, all files consisting of C code may be
named with the ending .c, for example, prog1.c . Then in order to list all files containing C code in
your home directory, you need only type ls *.c in that directory.

Beware: some applications give the same name to all the output files they
generate.

For example, some compilers, unless given the appropriate option, produce
compiled files named a.out. Should you forget to use that option, you are
advised to rename the compiled file immediately, otherwise the next such file will
overwrite it and it will be lost.

4.3 Getting Help

On-line Manuals

UNIX Tutorial Four

file:///E|/Users/jypeter/DocUnix/unixtut/unix4.html[22/06/2010 10:05:06]

There are on-line manuals which gives information about most commands. The manual pages tell
you which options a particular command can take, and how each option modifies the behaviour of
the command. Type man command to read the manual page for a particular command.

For example, to find out more about the wc (word count) command, type

% man wc

Alternatively

% whatis wc

gives a one-line description of the command, but omits any information about options etc.

Apropos

When you are not sure of the exact name of a command,

% apropos keyword

will give you the commands with keyword in their manual page header. For example, try typing

% apropos copy

Summary

* match any number of characters
? match one character
man command read the online manual page for a command
whatis command brief description of a command
apropos keyword match commands with keyword in their man pages

M.Stonebank@surrey.ac.uk, © 9th October 2000

UNIX Tutorial Five

file:///E|/Users/jypeter/DocUnix/unixtut/unix5.html[22/06/2010 10:05:07]

UNIX Tutorial Five

5.1 File system security (access rights)

In your unixstuff directory, type

% ls -l (l for long listing!)

You will see that you now get lots of details about the contents of your directory, similar to the
example below.

Each file (and directory) has associated access rights, which may be found by typing ls -l. Also,
ls -lg gives additional information as to which group owns the file (beng95 in the following
example):

-rwxrw-r-- 1 ee51ab beng95 2450 Sept29 11:52 file1

In the left-hand column is a 10 symbol string consisting of the symbols d, r, w, x, -, and,
occasionally, s or S. If d is present, it will be at the left hand end of the string, and indicates a
directory: otherwise - will be the starting symbol of the string.

The 9 remaining symbols indicate the permissions, or access rights, and are taken as three groups
of 3.

The left group of 3 gives the file permissions for the user that owns the file (or directory) (ee51ab
in the above example);
the middle group gives the permissions for the group of people to whom the file (or directory)
belongs (eebeng95 in the above example);
the rightmost group gives the permissions for all others.

The symbols r, w, etc., have slightly different meanings depending on whether they refer to a simple
file or to a directory.

Access rights on files.

r (or -), indicates read permission (or otherwise), that is, the presence or absence of permission
to read and copy the file
w (or -), indicates write permission (or otherwise), that is, the permission (or otherwise) to
change a file
x (or -), indicates execution permission (or otherwise), that is, the permission to execute a file,
where appropriate

UNIX Tutorial Five

file:///E|/Users/jypeter/DocUnix/unixtut/unix5.html[22/06/2010 10:05:07]

Access rights on directories.

r allows users to list files in the directory;
w means that users may delete files from the directory or move files into it;
x means the right to access files in the directory. This implies that you may read files in the
directory provided you have read permission on the individual files.

So, in order to read a file, you must have execute permission on the directory containing that file,
and hence on any directory containing that directory as a subdirectory, and so on, up the tree.

Some examples

-rwxrwxrwx a file that everyone can read, write and execute (and delete).

-rw-------
a file that only the owner can read and write - no-one else
can read or write and no-one has execution rights (e.g. your
mailbox file).

5.2 Changing access rights

chmod (changing a file mode)

Only the owner of a file can use chmod to change the permissions of a file. The options of chmod are
as follows

Symbol Meaning
u user

g group

o other

a all

r read

w write (and delete)

x execute (and access directory)

+ add permission

- take away permission

For example, to remove read write and execute permissions on the file biglist for the group and
others, type

% chmod go-rwx biglist

This will leave the other permissions unaffected.

To give read and write permissions on the file biglist to all,

% chmod a+rw biglist

Exercise 5a

Try changing access permissions on the file science.txt and on the directory backups

Use ls -l to check that the permissions have changed.

UNIX Tutorial Five

file:///E|/Users/jypeter/DocUnix/unixtut/unix5.html[22/06/2010 10:05:07]

5.3 Processes and Jobs

A process is an executing program identified by a unique PID (process identifier). To see
information about your processes, with their associated PID and status, type

% ps

A process may be in the foreground, in the background, or be suspended. In general the shell does
not return the UNIX prompt until the current process has finished executing.

Some processes take a long time to run and hold up the terminal. Backgrounding a long process
has the effect that the UNIX prompt is returned immediately, and other tasks can be carried out
while the original process continues executing.

Running background processes

To background a process, type an & at the end of the command line. For example, the command
sleep waits a given number of seconds before continuing. Type

% sleep 10

This will wait 10 seconds before returning the command prompt %. Until the command prompt is
returned, you can do nothing except wait.

To run sleep in the background, type

% sleep 10 &

[1] 6259

The & runs the job in the background and returns the prompt straight away, allowing you do run
other programs while waiting for that one to finish.

The first line in the above example is typed in by the user; the next line, indicating job number and
PID, is returned by the machine. The user is be notified of a job number (numbered from 1)
enclosed in square brackets, together with a PID and is notified when a background process is
finished. Backgrounding is useful for jobs which will take a long time to complete.

Backgrounding a current foreground process

At the prompt, type

% sleep 100

You can suspend the process running in the foreground by holding down the [control] key and
typing [z] (written as ^Z) Then to put it in the background, type

% bg

Note: do not background programs that require user interaction e.g. pine

5.4 Listing suspended and background processes

When a process is running, backgrounded or suspended, it will be entered onto a list along with a
job number. To examine this list, type

% jobs

UNIX Tutorial Five

file:///E|/Users/jypeter/DocUnix/unixtut/unix5.html[22/06/2010 10:05:07]

An example of a job list could be

[1] Suspended sleep 100
[2] Running netscape
[3] Running nedit

To restart (foreground) a suspended processes, type

% fg %jobnumber

For example, to restart sleep 100, type

% fg %1

Typing fg with no job number foregrounds the last suspended process.

5.5 Killing a process

kill (terminate or signal a process)

It is sometimes necessary to kill a process (for example, when an executing program is in an infinite
loop)

To kill a job running in the foreground, type ^C (control c). For example, run

% sleep 100
^C

To kill a suspended or background process, type

% kill %jobnumber

For example, run

% sleep 100 &
% jobs

If it is job number 4, type

% kill %4

To check whether this has worked, examine the job list again to see if the process has been
removed.

ps (process status)

Alternatively, processes can be killed by finding their process numbers (PIDs) and using kill
PID_number

% sleep 100 &
% ps

PID TT S TIME COMMAND
20077 pts/5 S 0:05 sleep 100
21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit

To kill off the process sleep 100, type

% kill 20077

and then type ps again to see if it has been removed from the list.

If a process refuses to be killed, uses the -9 option, i.e. type

UNIX Tutorial Five

file:///E|/Users/jypeter/DocUnix/unixtut/unix5.html[22/06/2010 10:05:07]

% kill -9 20077

Note: It is not possible to kill off other users' processes !!!

Summary

ls -lag list access rights for all files
chmod [options] file change access rights for named file
command & run command in background
^C kill the job running in the foreground
^Z suspend the job running in the foreground
bg background the suspended job
jobs list current jobs
fg %1 foreground job number 1
kill %1 kill job number 1
ps list current processes
kill 26152 kill process number 26152

M.Stonebank@surrey.ac.uk, 9th October 2000

UNIX Tutorial Six

file:///E|/Users/jypeter/DocUnix/unixtut/unix6.html[22/06/2010 10:05:07]

UNIX Tutorial Six

Other useful UNIX commands

quota

All students are allocated a certain amount of disk space on the file system for their personal files,
usually about 100Mb. If you go over your quota, you are given 7 days to remove excess files.

To check your current quota and how much of it you have used, type

% quota -v

df

The df command reports on the space left on the file system. For example, to find out how much
space is left on the fileserver, type

% df .

du

The du command outputs the number of kilobyes used by each subdirectory. Useful if you have
gone over quota and you want to find out which directory has the most files. In your home-
directory, type

% du

compress

This reduces the size of a file, thus freeing valuable disk space. For example, type

% ls -l science.txt

and note the size of the file. Then to compress science.txt, type

% compress science.txt

This will compress the file and place it in a file called science.txt.Z

To see the change in size, type ls -l again.

To uncomress the file, use the uncompress command.

% uncompress science.txt.Z

gzip

This also compresses a file, and is more efficient than compress. For example, to zip science.txt,
type

% gzip science.txt

This will zip the file and place it in a file called science.txt.gz

To unzip the file, use the gunzip command.

UNIX Tutorial Six

file:///E|/Users/jypeter/DocUnix/unixtut/unix6.html[22/06/2010 10:05:07]

% gunzip science.txt.gz

file

file classifies the named files according to the type of data they contain, for example ascii (text),
pictures, compressed data, etc.. To report on all files in your home directory, type

% file *

history

The C shell keeps an ordered list of all the commands that you have entered. Each command is
given a number according to the order it was entered.

% history (show command history list)

If you are using the C shell, you can use the exclamation character (!) to recall commands easily.

% !! (recall last command)

% !-3 (recall third most recent command)

% !5 (recall 5th command in list)

% !grep (recall last command starting with grep)

You can increase the size of the history buffer by typing

% set history=100

M.Stonebank@surrey.ac.uk, © 24th August 2001

UNIX Tutorial Seven

file:///E|/Users/jypeter/DocUnix/unixtut/unix7.html[22/06/2010 10:05:07]

UNIX Tutorial Seven

7.1 Compiling UNIX software packages

We have many public domain and commercial software packages installed on our systems, which
are available to all users. However, students are allowed to download and install small software
packages in their own home directory, software usually only useful to them personally.

There are a number of steps needed to install the software.

Locate and download the source code (which is usually compressed)
Unpack the source code
Compile the code
Install the resulting executable
Set paths to the installation directory

Of the above steps, probably the most difficult is the compilation stage.

Compiling Source Code

All high-level language code must be converted into a form the computer understands. For
example, C language source code is converted into a lower-level language called assembly
language. The assembly language code made by the previous stage is then converted into object
code which are fragments of code which the computer understands directly. The final stage in
compiling a program involves linking the object code to code libraries which contain certain built-in
functions. This final stage produces an executable program.

To do all these steps by hand is complicated and beyond the capability of the ordinary user. A
number of utilities and tools have been developed for programmers and end-users to simplify these
steps.

make and the Makefile

The make command allows programmers to manage large programs or groups of programs. It aids
in developing large programs by keeping track of which portions of the entire program have been
changed, compiling only those parts of the program which have changed since the last compile.

The make program gets its set of compile rules from a text file called Makefile which resides in the
same directory as the source files. It contains information on how to compile the software, e.g. the
optimisation level, whether to include debugging info in the executable. It also contains information
on where to install the finished compiled binaries (executables), manual pages, data files,
dependent library files, configuration files, etc.

Some packages require you to edit the Makefile by hand to set the final installation directory and
any other parameters. However, many packages are now being distributed with the GNU configure
utility.

configure

As the number of UNIX variants increased, it became harder to write programs which could run on
all variants. Developers frequently did not have access to every system, and the characteristics of
some systems changed from version to version. The GNU configure and build system simplifies the
building of programs distributed as source code. All programs are built using a simple,
standardised, two step process. The program builder need not install any special tools in order to

UNIX Tutorial Seven

file:///E|/Users/jypeter/DocUnix/unixtut/unix7.html[22/06/2010 10:05:07]

build the program.

The configure shell script attempts to guess correct values for various system-dependent variables
used during compilation. It uses those values to create a Makefile in each directory of the
package.

The simplest way to compile a package is:

1. cd to the directory containing the package's source code.
2. Type ./configure to configure the package for your system.
3. Type make to compile the package.
4. Optionally, type make check to run any self-tests that come with the package.
5. Type make install to install the programs and any data files and documentation.
6. Optionally, type make clean to remove the program binaries and object files from the source

code directory

The configure utility supports a wide variety of options. You can usually use the --help option to get
a list of interesting options for a particular configure script.

The only generic options you are likely to use are the --prefix and --exec-prefix options. These
options are used to specify the installation directories.

The directory named by the --prefix option will hold machine independent files such as
documentation, data and configuration files.

The directory named by the --exec-prefix option, (which is normally a subdirectory of the --prefix
directory), will hold machine dependent files such as executables.

7.2 Downloading source code

For this example, we will download a piece of free software that converts between different units of
measurements.

First create a download directory

% mkdir download

Download the software here and save it to your new download directory.

7.3 Extracting the source code

Go into your download directory and list the contents.

% cd download

% ls -l

As you can see, the filename ends in tar.gz. The tar command turns several files and directories
into one single tar file. This is then compressed using the gzip command (to create a tar.gz file).

First unzip the file using the gunzip command. This will create a .tar file.

% gunzip units-1.74.tar.gz

Then extract the contents of the tar file.

% tar -xvf units-1.74.tar

Again, list the contents of the download directory, then go to the units-1.74 sub-directory.

file:///Teaching/Unix/units-1.74.tar.gz

UNIX Tutorial Seven

file:///E|/Users/jypeter/DocUnix/unixtut/unix7.html[22/06/2010 10:05:07]

% cd units-1.74

7.4 Configuring and creating the Makefile

The first thing to do is carefully read the README and INSTALL text files (use the less
command). These contain important information on how to compile and run the software.

The units package uses the GNU configure system to compile the source code. We will need to
specify the installation directory, since the default will be the main system area which you will not
have write permissions for. We need to create an install directory in your home directory.

% mkdir ~/units174

Then run the configure utility setting the installation path to this.

% ./configure --prefix=$HOME/units174

NOTE:

The $HOME variable is an example of an environment variable.
The value of $HOME is the path to your home directory. Just type

% echo $HOME

to show the contents of this variable. We will learn more about environment
variables in a later chapter.

If configure has run correctly, it will have created a Makefile with all necessary options. You can
view the Makefile if you wish (use the less command), but do not edit the contents of this.

7.5 Building the package

Now you can go ahead and build the package by running the make command.

% make

After a minute or two (depending on the speed of the computer), the executables will be created.
You can check to see everything compiled successfully by typing

% make check

If everything is okay, you can now install the package.

% make install

This will install the files into the ~/units174 directory you created earlier.

7.6 Running the software

You are now ready to run the software (assuming everything worked).

% cd ~/units174

If you list the contents of the units directory, you will see a number of subdirectories.

bin The binary executables

UNIX Tutorial Seven

file:///E|/Users/jypeter/DocUnix/unixtut/unix7.html[22/06/2010 10:05:07]

info GNU info formatted documentation

man Man pages

share Shared data files

To run the program, change to the bin directory and type

% ./units

As an example, convert 6 feet to metres.

You have: 6 feet

You want: metres

* 1.8288

If you get the answer 1.8288, congratulations, it worked.

To view what units it can convert between, view the data file in the share directory (the list is quite
comprehensive).

To read the full documentation, change into the info directory and type

% info --file=units.info

7.7 Stripping unnecessary code

When a piece of software is being developed, it is useful for the programmer to include debugging
information into the resulting executable. This way, if there are problems encountered when running
the executable, the programmer can load the executable into a debugging software package and
track down any software bugs.

This is useful for the programmer, but unnecessary for the user. We can assume that the package,
once finished and available for download has already been tested and debugged. However, when
we compiled the software above, debugging information was still compiled into the final executable.
Since it is unlikey that we are going to need this debugging information, we can strip it out of the
final executable. One of the advantages of this is a much smaller executable, which should run
slightly faster.

What we are going to do is look at the before and after size of the binary file. First change into the
bin directory of the units installation directory.

% cd ~/units174/bin

% ls -l

As you can see, the file is over 100 kbytes in size. You can get more information on the type of file
by using the file command.

% file units

units: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked (uses
shared libs), not stripped

To strip all the debug and line numbering information out of the binary file, use the strip command

% strip units

% ls -l

As you can see, the file is now 36 kbytes - a third of its original size. Two thirds of the binary file
was debug code !!!

UNIX Tutorial Seven

file:///E|/Users/jypeter/DocUnix/unixtut/unix7.html[22/06/2010 10:05:07]

Check the file information again.

% file units

units: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked (uses
shared libs), stripped

HINT: You can use the make command to install pre-stripped copies of all the
binary files when you install the package.

Instead of typing make install, simply type make install-strip

M.Stonebank@surrey.ac.uk, © October 2001

UNIX Tutorial Eight

file:///E|/Users/jypeter/DocUnix/unixtut/unix8.html[22/06/2010 10:05:07]

UNIX Tutorial Eight

8.1 UNIX Variables

Variables are a way of passing information from the shell to programs when you run them.
Programs look "in the environment" for particular variables and if they are found will use the values
stored. Some are set by the system, others by you, yet others by the shell, or any program that
loads another program.

Standard UNIX variables are split into two categories, environment variables and shell variables. In
broad terms, shell variables apply only to the current instance of the shell and are used to set
short-term working conditions; environment variables have a farther reaching significance, and
those set at login are valid for the duration of the session. By convention, environment variables
have UPPER CASE and shell variables have lower case names.

8.2 Environment Variables

An example of an environment variable is the OSTYPE variable. The value of this is the current
operating system you are using. Type

% echo $OSTYPE

More examples of environment variables are

USER (your login name)
HOME (the path name of your home directory)
HOST (the name of the computer you are using)
ARCH (the architecture of the computers processor)
DISPLAY (the name of the computer screen to display X windows)
PRINTER (the default printer to send print jobs)
PATH (the directories the shell should search to find a command)

Finding out the current values of these variables.

ENVIRONMENT variables are set using the setenv command, displayed using the printenv or env
commands, and unset using the unsetenv command.

To show all values of these variables, type

% printenv | less

8.3 Shell Variables

An example of a shell variable is the history variable. The value of this is how many shell
commands to save, allow the user to scroll back through all the commands they have previously
entered. Type

% echo $history

More examples of shell variables are

cwd (your current working directory)

UNIX Tutorial Eight

file:///E|/Users/jypeter/DocUnix/unixtut/unix8.html[22/06/2010 10:05:07]

home (the path name of your home directory)
path (the directories the shell should search to find a command)
prompt (the text string used to prompt for interactive commands shell your login shell)

Finding out the current values of these variables.

SHELL variables are both set and displayed using the set command. They can be unset by using
the unset command.

To show all values of these variables, type

% set | less

So what is the difference between PATH and path ?

In general, environment and shell variables that have the same name (apart from the case) are
distinct and independent, except for possibly having the same initial values. There are, however,
exceptions.

Each time the shell variables home, user and term are changed, the corresponding environment
variables HOME, USER and TERM receive the same values. However, altering the environment
variables has no effect on the corresponding shell variables.

PATH and path specify directories to search for commands and programs. Both variables always
represent the same directory list, and altering either automatically causes the other to be changed.

8.4 Using and setting variables

Each time you login to a UNIX host, the system looks in your home directory for initialisation files.
Information in these files is used to set up your working environment. The C and TC shells uses
two files called .login and .cshrc (note that both file names begin with a dot).

At login the C shell first reads .cshrc followed by .login

.login is to set conditions which will apply to the whole session and to perform actions that are
relevant only at login.

.cshrc is used to set conditions and perform actions specific to the shell and to each invocation of
it.

The guidelines are to set ENVIRONMENT variables in the .login file and SHELL variables in the
.cshrc file.

WARNING: NEVER put commands that run graphical displays
(e.g. a web browser) in your .cshrc or .login file.

8.5 Setting shell variables in the .cshrc file

For example, to change the number of shell commands saved in the history list, you need to set the
shell variable history. It is set to 100 by default, but you can increase this if you wish.

% set history = 200

Check this has worked by typing

% echo $history

UNIX Tutorial Eight

file:///E|/Users/jypeter/DocUnix/unixtut/unix8.html[22/06/2010 10:05:07]

However, this has only set the variable for the lifetime of the current shell. If you open a new xterm
window, it will only have the default history value set. To PERMANENTLY set the value of history,
you will need to add the set command to the .cshrc file.

First open the .cshrc file in a text editor. An easy, user-friendly editor to use is nedit.

% nedit ~/.cshrc

Add the following line AFTER the list of other commands.

set history = 200

Save the file and force the shell to reread its .cshrc file buy using the shell source command.

% source .cshrc

Check this has worked by typing

% echo $history

8.6 Setting the path

When you type a command, your path (or PATH) variable defines in which directories the shell will
look to find the command you typed. If the system returns a message saying "command: Command
not found", this indicates that either the command doesn't exist at all on the system or it is simply
not in your path.

For example, to run units, you either need to directly specify the units path
(~/units174/bin/units), or you need to have the directory ~/units174/bin in your path.

You can add it to the end of your existing path (the $path represents this) by issuing the
command:

% set path = ($path ~/units174/bin)

Test that this worked by trying to run units in any directory other that where units is actually located.

% cd; units

HINT: You can run multiple commands on one line by separating them with a
semicolon.

To add this path PERMANENTLY, add the following line to your .cshrc AFTER the list of other
commands.

set path = ($path ~/units174/bin)

M.Stonebank@surrey.ac.uk October 2001

	UNIX_doc
	TB_Unix_Cheat_Sheet_Corrected_JYP
	Treebeard's Unix Cheat Sheet

	UNIX_Tutorial_for_Beginners
	index
	Disque local
	UNIX Tutorial for Beginners

	unixintro
	Disque local
	UNIX Tutorial - Introduction

	unix0
	Disque local
	UNIX Tutorial

	unix1
	Disque local
	UNIX Tutorial One

	unix2
	Disque local
	UNIX Tutorial Two

	unix3
	Disque local
	UNIX Tutorial Three

	unix4
	Disque local
	UNIX Tutorial Four

	unix5
	Disque local
	UNIX Tutorial Five

	unix6
	Disque local
	UNIX Tutorial Six

	unix7
	Disque local
	UNIX Tutorial Seven

	unix8
	Disque local
	UNIX Tutorial Eight

