[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

IPSL python tutorial: some exercises for beginners

WARNING!
WARNING! This is the FULL version of the tutorial (including the solutions)

WARNING!

Jean-Yves Peterschmitt - LSCE

October 2014

Documents

These exercises are based on the *python_intro_ipsl_oct2013.pdf* tutorial that you can download from the following
pages

o http://www.lsce.ipsl.fr/Phocea/Cours/index.php?uid=jean-yves.peterschmitt
e http://www.Imd.polytechnique.fr/~dkhvoros/training.html

You should also download the following useful pdf files:
e Python 2.7 Quick Reference

http://raruet.free.fr’fPQR27/PQR2.7 printing_a4.pdf
o Official Python Tutorial (tutorial.pdf)

Official Python Library Reference (library.pdf)
Both pdf files are available in the following archive, on the Python web site

http://docs.python.org/2.7/archives/python-2.7.5-docs-pdf-a4.zip

Notes

e This document is an ipython notebook. It can be opened and (re)played in ipython (start ‘ipython notebook' and
open the notebook from the browser interface), or the commands can just be typed in a regular python or ipython
interpreter.

¢ In a python interpreter (in interactive mode), the value of a variable can be printed by just typing the name of the
variable (and the Enter key), or with the print command. The behavior is subtly different in the ipython notebook,
so we sometimes use print below, when it gives more useful output

e The most useful ipython notebook shorcuts that you need to know in this tutorial are

» Shift-Enter: run cell
m Ctrl-Enter: run cell in-place
You can display the other available shortcuts by typing: Ctrl-m h

1 of9 10/22/2013 03:55 PM

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

Playing with strings (and objects, indices, loops)

Create a string named ipsl with the following content:

Institut Pierre Simon Laplace

In [47]: ipsl = 'Institut Pierre Simon Laplace'

Display the type of the string object with type()

In [48]: type(ipsl)

Out[48]: str
Determine the length of the string

In [49]: Tlen(ipsl)

Qut[49]: 29
Try to access the 40th character of the string and look at the error that is generated

In [50]: ipsl[40]

IndexError Traceback (most recent call last)
<ipython-input-50-175bfd4e069e> in <module>()
----> 1 ipsl[40]

IndexError: string index out of range

Extract the first character of the string

In [51]: ipsl[0O]

Qut[51]: 'I'

Use 2 different ways to extract the last character of the string

Hint: use a positive and a negative index

In [52]: dipsl[len(ipsl)-1]

Out[52]: 'e'

20f9 10/22/2013 03:55 PM

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

In [53]: ipsl[-1]

Qut[53]: ‘e’
Use indices to display the full string

In [54]: ipsl[0:29]

OQut[54]: 'Institut Pierre Simon Laplace'

In [55]: ipsl[O:len(ipsl)]

Out[55]: ‘'Institut Pierre Simon Laplace'
Use indices to display every 3rd character of the string

In [56]: ipsl[0:29:3] # Use explicit index values

Out[56]: 'ItuPr m pc'

In [57]: ipsl[0::3] # Use implicit end of the string

Out[57]: 'ItuPr m pc'

In [58]: ipsl[::3] # Use implicit beginning and end of the string

Out[58]: 'ItuPr m pc'

Use help() on the find method of the string

Note: help on help (in a regular python interpreter): space: next screen, b: back one screen, g:quit, /: search

In [59]: help(ipsl.find)

Help on built-in function find:

find(...)
S.find(sub [,start [,end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

Use 2 different ways to extract the last word of the ipsl string and store it in a new lap_str string

Hint: first use find and indices, then use the split method of the string

In [60]: ipsl.find('Laplace')

Out[60]: 22

30of9 10/22/2013 03:55 PM

[Python Notebook

4 of 9

In [61]: lap str = ipsl[22:29]
print lap str
lap_str = ipsl[ipsl.find('Laplace'):]
print lap str

Laplace
Laplace

In [62]: help(ipsl.split)

Help on built-in function split:

split(...)
S.split([sep [,maxsplit]]) -> list of strings
Return a list of the words in the string S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any

whitespace string is a separator and empty strings are removed
from the result.

In [63]: ipsl.split()

Qut[63]: ['Institut', 'Pierre', 'Simon', 'Laplace']

In [64]: lap_str = ipsl.split()[-1]
print lap_str

Laplace

Use help() to determine how the python built-in range function works

In [65]: help(range)
Help on built-in function range in module builtin :

range(...)
range([start,] stop[, step]) -> list of integers
Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1l, i+2, ..., j-11; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).

For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

Use range to generate a list of integers going from 0 to 8

In [66]: range(9)

OQut[66]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

Use range to generate a list of as many integers as there are letters in the last word of the ipsl string

10/22/2013 03:55 PM

http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

In [67]: range(len(lap _str))

Out[67]: [0, 1, 2, 3, 4, 5, 6]

Use 2 different ways to revert the caracters of the last word of ipsl

Hint: first use a for loop, then use just a slice operation with the apropriate indices

In [68]: 1 revert = "'
for i in range(len(lap_str)):
1 revert += lap str[-1 - i] # Same as 1l revert = 1 revert + lap str[-1 - 1]
print 1 revert

ecalpalL

In [69]: lap_str[::-1]

Out[69]: ‘'ecalpal'
Use dir() on the ipsl string object and find a way to convert it to uppercase characters

In [70]: print dir(ipsl)

[' add ', ' class ', ' contains ', ' delattr ', ' doc_ ', ' eq ',
‘* format ', ' ge ', ' getattribute ', ' getitem ', ' getnewargs ‘',
' getslice ', ' gt ', ' hash ', ' dipit ', ' le ', ' 1len_ ',
1t 'y, mod ', ' mul ', ' ne ', ' new ', ' reduce ',

' reduceex ', ' repr_ ', ' rmod ‘', ' rmul_ ', ' setattr_ ‘',

' sizeof ', ' str ', ' subclasshook ', ' formatter field name split',
' formatter_parser', 'capitalize', 'center', 'count', 'decode', ‘'encode',
'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', ‘'isalpha',
'isdigit', 'islower', 'isspace',6 'istitle', ‘'isupper', 'join', 'ljust’,

'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust',
"rpartition', ‘'rsplit', ‘'rstrip', ‘'split', 'splitlines', 'startswith',
'strip', 'swapcase', 'title', 'translate', ‘'upper', 'zfill']

In [71]: help(ipsl.upper)

Help on built-in function upper:

upper(...)
S.upper() -> string

Return a copy of the string S converted to uppercase.

In [72]: dipsl.upper()

Out[72]: '"INSTITUT PIERRE SIMON LAPLACE'

Using lists to experiment with python subtleties

Use the split method of the ipsl string to create an ipsl_words list variable (4 strings with the individual words of IPSL),
and display ipsl_words

50f9 10/22/2013 03:55 PM

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

In [73]: ipsl words = ipsl.split()
ipsl words

Out[73]: ['Institut', 'Pierre', 'Simon', 'Laplace']

Create 2 copies of ipsl_words with ipsl_pnt = ipsl_words (copy the reference) and ipsl_cp = ipsl_words][:] (copy the
values) and display all the lists by typing:

ipsl_words, ipsl_pnt, ipsl_cp

In [74]: ipsl pnt = ipsl words
ipsl cp = ipsl words[:]
ipsl words, ipsl pnt, ipsl cp

Out[74]: (['Institut', 'Pierre', 'Simon', 'Laplace'l],
['Institut', 'Pierre', 'Simon', 'Laplace'],
['Institut', 'Pierre', 'Simon', 'Laplace'])

Assign a new value ‘Bob' to the 2nd string of ipsl_pnt, and the value 'Bill' to the 3rd string of ipsl_cp, and display the 3
lists again

In [75]: ipsl pnt[1l] = 'Bob’
ipsl cp[2] = 'Bill'
ipsl words, ipsl pnt, ipsl cp

Out[75]: (['Institut', 'Bob', 'Simon', 'Laplace'],
['Institut', 'Bob', 'Simon', 'Laplace'l],
['Institut', 'Pierre', 'Bill', 'Laplace'])

Congratulations, you have just learned the subtle difference between having 2 variables that point to the same object in
memory (ipsl_words and ipsl_pnt point to the same list), and using the copy of a variable (ipsl_cp)!

Just to be sure, replace the 4th value of ipsl_words with the string 'LAPLACE' (all uppercase characters), and display
again the 3 lists

In [76]: ipsl words[3] = 'LAPLACE'
ipsl words, ipsl pnt, ipsl cp

Qut[76]: (['Institut', 'Bob', 'Simon', 'LAPLACE'],
['Institut', 'Bob', 'Simon', 'LAPLACE'],
['Institut', 'Pierre', 'Bill', 'Laplace'l])

Import the copy module and have a quick look at the built-in documention of the module with help()

In [77]: import copy
The output of help(copy) below is a bit too long for printing...
When you have opened this notebook, uncomment the line below
and execute the cell
help(copy)

Display only the help of the copy function of the copy module (e.g. copy.copy())

6 of 9 10/22/2013 03:55 PM

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

In [78]: help(copy.copy)

Help on function copy in module copy:

copy (x)
Shallow copy operation on arbitrary Python objects.

See the module's doc_ string for more info.

Notes:

e It's usually enough to copy lists with a slicing operation (my_list[:] or my_list[start:end]). There no need to
use the copy module when there is an easier way to make a copy (many objects provide a built-in method for
copying them)!

¢ If you ever need more information about the difference between shallow and deep copy (copy.deepcopy), you
can check the following section of library.pdf: 8.17 copy — Shallow and deep copy operations

e There are lots of cases when it's a good thing to avoid uselessly copying objects (e.g. BIG data arrays)!

¢ You should not worry too much about the reference/copy choice (what happens by default is usually what you
want), and you just need to be aware that this can sometimes cause side-effects

Copy ipsl_cp to ipsl_cp_2 and display the 2 lists

In [79]: ipsl cp 2 = ipsl cpl:]
ipsl cp, ipsl cp 2

Out[79]: (['Institut', 'Pierre', 'Bill', 'Laplace'l],
['Institut', 'Pierre', 'Bill', 'Laplace'l])

Use the built-in sorted() function of python on the ipsl_cp list, and the sort() method of the ipsl_cp_2 list, then display
the 2 lists again

In [80]: print 'This is what we get with sorted:', sorted(ipsl _cp)
print 'This is what we get with sort():', ipsl cp 2.sort()
ipsl cp, ipsl cp 2

This is what we get with sorted: ['Bill', 'Institut', 'Laplace', 'Pierre']
This is what we get with sort(): None

Out[80]: (['Institut', 'Pierre', 'Bill', 'Laplace'l],
['Bill', 'Institut', 'Laplace', 'Pierre'])

Warning! What happened is that the 1st way of sorting created a sorted copy of ipsl_cp (without altering ipsl_cp) and
the 2nd way of sorting directly sorted the original ipsl_cp_2 list, without returning a result (this is called an in place
operation). In-place operations can have side-effects if they change an object, but you don't know about it :-) Luckily, the
documentation mentions this sort of behavior!

Display (and read!) the help of the sort method of the ipls_cp list

In [81]: help(ipsl cp.sort)

Help on built-in function sort:
sort(...)

L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
cmp(x, y) -> -1, 0, 1

7 of 9 10/22/2013 03:55 PM

[Python Notebook

8 of 9

More experiments with loops

Use 2 different kinds of loops to print the words of ipsl_words

Hint: you can either loop on a list of indices, or directly on the elements of the list

In [82]: for i in range(len(ipsl words)):
print ipsl words[i]

Institut
Bob
Simon
LAPLACE

In [83]: for w in ipsl words:
print w

Institut
Bob
Simon
LAPLACE

Use enumerate to loop on both the indices AND the values of ipsl_words
Hint: look for Looping Techniques in tutorial.pdf
In [84]: for i, w in enumerate(ipsl words):

print i, w

0 Institut
1 Bob
2 Simon
3 LAPLACE
Use the following formatted print in the enumerate loop to get a nicer output, where:

e i is the variable that loops on the indices
e w is the variable that loops on the words

print 'The word at index %03i is [%15s]' % (i, w)
Note: more information about formats is available in the String Formatting Operations section of library.pdf
In [85]: for i, w in enumerate(ipsl words):
print 'The word at index %03i is [%15s]' % (i, w)

The word at index 000 is [Institut]
The word at index 001 is [Bob]
The word at index 002 is [Simon]
The word at index 003 is [LAPLACE]

Use ONE line to store each word of ipsl_words in individual I, P, S and L variables. Print the | and L variables

Hint: look for unpack in PQR2.7_printing_a4.pdf

10/22/2013 03:55 PM

http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

[Python Notebook http://127.0.0.1:8888/432855ba-433a-43ce-ab30-b88d6...

In [86]: I, P, S, L = ipsl words
print I, L

Institut LAPLACE

Use an if test and a break command in one of the previous loops to exit the loop when you have reached the word
defined in the S string

WARNING! Remember that you have to use '==' (and not just a single '=' sign) to test the equality of variables!

In [87]: for w in ipsl words:
if w ==
break
print w

Institut
Bob

WARNING! Always think and be careful before using BIG lists/loops/objects.

Open another terminal (or the Task Manager if you are using Windows), and start monitoring your processes by using top
(then type u, then your login, to display only your processes).

Then make a loop on range(50000000) and print the index every 10000000 loops. Python will first create a BIG
temporary list of 50000000 integers, then loop over it. Carefully monitor the memory usage of your process in the top
terminal window

Hint: look for modulo in PQR2.7_printing_ad4.pdf and use it in order to print the index only every 10000000 loops

In [88]: for i in range(50000000):
if i % 10000000 == 0:
print i

0

10000000
20000000
30000000
40000000

Make the same loop over xrange(50000000) and keep monitoring the memory usage of your process. It is faster and it
does not use any extra memory because the indices are generated on the fly

In [89]: for i in xrange(50000000):
if i % 10000000 ==
print i

0

10000000
20000000
30000000
40000000

90of 9 10/22/2013 03:55 PM

