User Tools

Site Tools


other:python:jyp_steps

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
other:python:jyp_steps [2018/10/04 17:39]
jypeter Added link to the PyFormat tutorial
other:python:jyp_steps [2018/12/14 15:05] (current)
jypeter [Matplotlib] Added note about offline graphics
Line 186: Line 186:
     - a Matplotlib //Axis// is a plot inside a Figure... [[http://​matplotlib.org/​faq/​usage_faq.html#​parts-of-a-figure|More details]]     - a Matplotlib //Axis// is a plot inside a Figure... [[http://​matplotlib.org/​faq/​usage_faq.html#​parts-of-a-figure|More details]]
     - some examples are more //​pythonic//​ (ie object oriented) than others, some example mix different styles of coding, all this can be confusing. Try to [[http://​matplotlib.org/​faq/​usage_faq.html#​coding-styles|use an object oriented way of doing things]]!     - some examples are more //​pythonic//​ (ie object oriented) than others, some example mix different styles of coding, all this can be confusing. Try to [[http://​matplotlib.org/​faq/​usage_faq.html#​coding-styles|use an object oriented way of doing things]]!
-    - it may be hard to (remember how to) work with colors. Some examples from the [[|Gallery]] can help you!+    - it may be hard to (remember how to) work with colors. Some examples from the [[http://​matplotlib.org/​gallery.html|Gallery]] can help you!
       * [[https://​matplotlib.org/​examples/​pylab_examples/​leftventricle_bulleye.html|leftventricle_bulleye.py]]:​ associating different types of colormaps to a plot and colorbar       * [[https://​matplotlib.org/​examples/​pylab_examples/​leftventricle_bulleye.html|leftventricle_bulleye.py]]:​ associating different types of colormaps to a plot and colorbar
       * [[https://​matplotlib.org/​examples/​api/​colorbar_only.html|colorbar_only.py]]:​ the different types of colorbars (or plotting only a colorbar)       * [[https://​matplotlib.org/​examples/​api/​colorbar_only.html|colorbar_only.py]]:​ the different types of colorbars (or plotting only a colorbar)
Line 192: Line 192:
       * [[https://​matplotlib.org/​examples/​color/​named_colors.html|named_colors.py]]:​ named colors       * [[https://​matplotlib.org/​examples/​color/​named_colors.html|named_colors.py]]:​ named colors
       * More details about the colors below, in the [[#​graphics_related_resources|Resources section]]       * More details about the colors below, in the [[#​graphics_related_resources|Resources section]]
-    - sometimes the results of the python/​matplolib commands are displayed ​directly, sometimes not. It depends if you are in [[http://​matplotlib.org/​faq/​usage_faq.html#​what-is-interactive-mode|interactive or non-interactive]] mode+    - sometimes the results of the python/​matplolib commands are displayed ​immediately, sometimes not. It depends if you are in [[http://​matplotlib.org/​faq/​usage_faq.html#​what-is-interactive-mode|interactive or non-interactive]] mode 
 +    - if your matplotlib is executed in a batch script, it will generate an error when trying to create (''​show()''​) a plot, because matplotlib expects to be able to display the figure on a screen by default. 
 +      * Check how you can [[https://​matplotlib.org/​faq/​howto_faq.html?​highlight=web#​generate-images-without-having-a-window-appear|generate images offline]]
     - the documentation may mention [[http://​matplotlib.org/​faq/​usage_faq.html#​what-is-a-backend|backends]]. What?? Basically, you use python commands to create a plot, and the backend is the //thing// that will render your plot on the screen or in a file (png, pdf, etc...)     - the documentation may mention [[http://​matplotlib.org/​faq/​usage_faq.html#​what-is-a-backend|backends]]. What?? Basically, you use python commands to create a plot, and the backend is the //thing// that will render your plot on the screen or in a file (png, pdf, etc...)
     - if you don't see a part of what you have plotted, maybe it's hidden behind other elements! Use the [[https://​matplotlib.org/​examples/​pylab_examples/​zorder_demo.html|zorder parameter]] to explicitly specify the plotting order/​layers     - if you don't see a part of what you have plotted, maybe it's hidden behind other elements! Use the [[https://​matplotlib.org/​examples/​pylab_examples/​zorder_demo.html|zorder parameter]] to explicitly specify the plotting order/​layers
   - Read the [[http://​www.labri.fr/​perso/​nrougier/​teaching/​matplotlib/​|Matplotlib tutorial by Nicolas Rougier]]   - Read the [[http://​www.labri.fr/​perso/​nrougier/​teaching/​matplotlib/​|Matplotlib tutorial by Nicolas Rougier]]
   - Download the [[http://​matplotlib.org/​contents.html|pdf version of the manual]]. **Do not print** the 2800+ pages of the manual! Read the beginner'​s guide (Chapter //FIVE// of //Part II//) and have a super quick look at the table of contents of the whole document.   - Download the [[http://​matplotlib.org/​contents.html|pdf version of the manual]]. **Do not print** the 2800+ pages of the manual! Read the beginner'​s guide (Chapter //FIVE// of //Part II//) and have a super quick look at the table of contents of the whole document.
 +
 +==== Misc Matplotlib tricks ====
 +
 +  * Specifying the background color of a plot (e.g. when plotting a masked variable and you don't want the masked areas to be white)
 +    * ''#​ make the background dark gray (call this before the contourf)''​\\ ''​plt.gca().patch.set_color('​.25'​)''​\\ ''​plt.contourf(d)''​\\ ''​plt.show()''​
 +    * [[https://​stackoverflow.com/​questions/​9797520/​masking-part-of-a-contourf-plot-in-matplotlib|trick source]]
  
 ===== Graphics related resources ===== ===== Graphics related resources =====
other/python/jyp_steps.1538667559.txt.gz · Last modified: 2018/10/04 17:39 (external edit)